References
[1] SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, 1994, Nov 20 -22, Santa Fe, NM, USA. Piscataway, NJ, USA: IEEE, 1994: 124 -134.
[2] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79 (2): 325 -328.
[3] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations. Physical Review Letters, 2009, 103(15): Article 150502.
[4] WAN L C, YU C H, PAN S J, et al. Asymptotic quantum algorithm for the Toeplitz systems. Physical Review A, 2018,
97(6): Article 062322.
[5] LIU H L, WU Y S, WAN L C, et al. Variational quantum algorithm for the Poisson equation. Physical Review A, 2021,
104(2): Article 022418.
[6] LIU H L, QIN S J, WAN L C, et al. A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected graph. arxiv Preprint, arxiv: 2203. 14451, 2022.
[7] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning. Nature, 2017, 549(7671): 195 -202.
[8] WIEBE N, BRAUN D, LLOYD S. Quantum algorithm for data fitting. Physical Review Letters, 2012, 109(5): Article 050505.
[9] YU C H, GAO F, WEN Q Y. An improved quantum algorithm for ridge regression. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(3): 858 -866.
[10] REBENTROST P, MOHSENI M, LLOYD S. Quantum support vector machine for big data classification. Physical Review Letters, 2014, 113(13): Article 130503.
[11] DUAN B J, YUAN J B, LIU Y, et al. Quantum algorithm for support matrix machines. Physical Review A, 2017, 96 (3): Article 032301.
[12] LLOYD S, MOHSENI M, REBENTROST P. Quantum algorithms for supervised and unsupervised machine learning.
arxiv Preprint, arxiv: 1307. 0411, 2003.
[13] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis. Nature Physics, 2014, 10(9): 631 -633.
[14] CONG I, DUAN L M. Quantum discriminant analysis for dimensionality reduction and classification. New Journal of
Physics, 2016, 18(7): Article 073011.
[15] PAN S J, WAN L C, LIU H L, et al. Quantum algorithm for neighborhood preserving embedding. Chinese Physics B, 2022, 31: Article 060304.
[16] ABBAS A, SUTTER D, ZOUFAL C, et al. The power of quantum neural networks. Nature Computational Science, 2021, 1(6): 403 -409.
[17] DUNJKO V, BRIEGEL H J. Machine learning and artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physcis, 2018, 81(7): Article 074001.
[18] VAPNIK V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988 -999.
[19] TRAFALIS T B, INCE H. Support vector machine for regression and applications to financial forecasting. Proceedings of the 2000 IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00), 2000, Jul 24 - 27, Como, Italy. Piscataway, NJ, USA: IEEE, 2000: 348 -353.
[20] GOH K S, CHANG E Y, LI B T. Using one-class and two-class SVMs for multiclass image annotation. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10): 1333 -1346.
[21] ISA D, LEE L H, KALLIMANI V P, et al. Text document preprocessing with the Bayes formula for classification using the support vector machine. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264 -1272.
[22] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293 -300.
[23] BI J B, ZHANG T. Support vector classification with input data uncertainty. Advances in Neural Information Processing Systems 17: Proceedings of the 17th International Conference on Neural Information Processing Systems (NIPS'04), 2004, Dec 13 -18, Vancouver, Canada. Cambridge, MA, USA: MIT Press, 2004: 161 -168.
[24] ROSASCO L, DE VITO E, CAPONNETTO A, et al. Are loss functions all the same? Neural Computation, 2004, 16(5): 1063 -1076.
[25] SHALEV-SHWARTZ S, SINGER Y, SREBRO N, et al. Pegasos: Primal estimated sub-gradient solver for SVM.
Mathematical Programming, 2011, 127(1): 3 -30.
[26] BISHWAS A K, MANI A, PALADE V. Big data classification with quantum multiclass SVM and quantum one-against-all approach. Proceedings of the 2nd International Conference on Contemporary Computing and Informatics (IC3I'16), 2016, Dec 14 -17, Greater Noida, India. Piscataway, NJ, USA: IEEE, 2016: 875 -880.
[27] BISHWAS A K, MANI A, PALADE V. An all-pair quantum SVM approach for big data multiclass classification. Quantum Information Processing, 2018, 17(10): Article 282.
[28] LIN J, ZHANG D B, ZHANG S, et al. Quantum-enhanced least-square support vector machine: Simplified quantum
algorithm and sparse solutions. Physics Letters A, 2020, 384(25): Article 126590.
[29] HAVLICEK V, CORCOLES A D, TEMME K, et al. Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567(7747): 209 -212.
[30] KERENIDIS I, PRAKASH A, SZILAGYI D. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: Article 427.
[31] LI H, JIANG N, ZHANG R, et al. Quantum support vector machine based on gradient descent. International Journal of Theoretical Physics, 2022, 61(3): Article 92.
[32] ZHANG R, WANG J, JIANG N, et al. Quantum support vector machine based on regularized Newton method. Neural Networks, 2022, 151: 376 -384.
[33] REBENTROST P, SCHULD M, WOSSNIG L, et al. Quantum gradient descent and Newton's method for constrained polynomial optimization. New Journal of Physics, 2019, 21(7): Article 073023.
[34] GAO P, LI K R, WEI S J, et al. Quantum gradient algorithm for general polynomials. Physical Review A, 2021, 103(4): Article 042403.
[35] BRASSARD G, HOYER P, MOSCA M, et al. Quantum amplitude amplification and estimation. LOMONACO S J,
BRANDT H E (eds). Quantum Computation and Information. Contemporary Mathematics 305. Providence, RI, USA:
American Mathematical Society, 2002: 53 -74.
[36] DUAN B J, YUAN J B, LIU Y, et al. Efficient quantum circuit for singular-value thresholding. Physical Review A, 2018, 98(1): Article 012308.
[37] MITARAI K, KITAGAWA M, FUJII K. Quantum analog-digital conversion. Physical Review A, 2019, 99(1): Article 012301.
[38] WOSSNIG L, ZHAO Z K, PRAKASH A. Quantum linear system algorithm for dense matrices. Physical Review Letters, 2018, 120(5): Article 050502.
[39] KERENIDIS I, PRAKASH A. Quantum recommendation system. Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS'17), 2017, Jan 9 -11, Berkeley, CA, USA. Berlin, Germany: Schloss Dagstuhl-Leibniz Center for Information, 2017: 49.1 -49.21.
[40] KERENIDIS I, LANDMAN J, LUONGO A, et al. Q-means: A quantum algorithm for unsupervised machine learning. Advances in Neural Information Processing Systems 32: Proceedings of the 33rd International Conference on Neural Information Processing Systems (NeurIPS'19), 2019, Dec 8 -14, Vancouver, Canada. Cambridge, MA, USA: MIT Press, 2019: Article 2295.
[41] ZHOU S S, LOKE T, IZAAC J A, et al. Quantum Fourier transform in computational basis. Quantum Information
Processing, 2017, 16(3): Article 82.
[42] LI H. Statistical learning method. Beijing, China: Tsinghua University Press, 2012 (in Chinese).
[43] ALLCOCK J, HSIEH C Y. A quantum extension of SVM-perf for training nonlinear SVMs in almost linear time. Quantum, 2020(4): Article 342.
|