References
[1] COYLE B, DOOSTI M, KASHEFI E, et al. Progress toward practical quantum cryptanalysis by variational quantum cloning. Physical Review A, 2022, 105(4): Article 042604.
[2] GONG L H, XIANG L Z, LIU S H, et al. Born machine model based on matrix product state quantum circuit. Physica A: Statistical Mechanics and Its Applications, 2022, 593: Article 126907.
[3] ZHAN Y B, ZHANG L L, ZHANG Q Y. Quantum secure direct communication by entangled qutrits and entanglement swapping. Optics Communications, 2009, 282(23): 4633 -4636.
[4] HASSANPOUR S, HOUSHMAND M. Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Information Processing, 2015, 14(2): 739 -753.
[5] PATWARDHAN S, MOULICK S R, PANIGRAHI P K. Efficient controlled quantum secure direct communication protocols. International Journal of Theoretical Physics, 2016, 55(7): 3280 -3288.
[6] LO H K, CURTY M, TAMAKI K. Secure quantum key distribution. Nature Photonics, 2014, 8(8): 595 -604.
[7] LI L L, LI J, CHANG Y, et al. Quantum key distribution based on single-particle and EPR entanglement. Science China: Information Sciences, 2020, 63(6): Article 169501.
[8] BAI C M, LI Z H, LI Y M. Sequential quantum secret sharing using a single qudit. Communications in Theoretical Physics, 2018, 69(5): 513 -518.
[9] LI C Y, YE C Q, TIAN Y, et al. Cluster-state-based quantum secret sharing for users with different abilities. Quantum Information Processing, 2021, 20(12): Article 385.
[10] LIU W, WANG Y B, JIANG Z T. An efficient protocol for the quantum private comparison of equality with W state. Optics Communications, 2011, 284(12): 3160 -3163.
[11] LANG Y F. Quantum gate-based quantum private comparison. International Journal of Theoretical Physics, 2020, 59(3): 833 -840.
[12] ZHOU N R, ZENG G H, XIONG J. Quantum key agreement protocol. Electronics Letters, 2004, 40(18): 1149 -1150.
[13] HSUEH C C, CHEN C Y. Quantum key agreement protocol with maximally entangled states. Proceedings of the 14th Information Security Conference, 2004, Jun 10 -11, Taipei, China (in Chinese). Taipei, China: Chinese Cryptology and Information Security Association (CCISA) / Engineering Center, National Science Council of Taiwan / Institute for Information Industry (in Chinese), 2004: 236 -242.
[14] CHONG S K, HWANG T. Quantum key agreement protocol based on BB84. Optics Communications, 2010, 283(6): 1192 -1195.
[15] SUN Z W, ZHANG C, WANG B H, et al. Improvements on “multiparty quantum key agreement with single particles". Quantum Information Processing, 2013, 12(11): 3411 -3420.
[16] HUANG W, WEN Q Y, LIU B, et al. Quantum key agreement with EPR pairs and single-particle measurements. Quantum Information Processing, 2014, 13(3): 649 -663.
[17] SHUKLA C, ALAM N, PATHAK A. Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Information Processing, 2014, 13(11): 2391 -2405.
[18] SHI R H, ZHONG H. Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Information Processing, 2013, 12(2): 921 -932.
[19] XU G B, WEN Q Y, GAO F, et al. Novel multiparty quantum key agreement protocol with GHZ states. Quantum Information Processing, 2014, 13(12): 2587 -2594.
[20] HE Y F, MA W P. Quantum key agreement protocols with four-qubit cluster states. Quantum Information Processing, 2015, 14(9): 3483 -3498.
[21] LIU B, GAO F, HUANG W, et al. Multiparty quantum key agreement with single particles. Quantum Information Processing, 2013, 12(4): 1797 -1805.
[22] SUN Z W, YU J P, WANG P. Efficient multi-party quantum key agreement by cluster states. Quantum Information Processing, 2016, 15(1): 373 -384.
[23] LIU W J, XU Y, YANG C N, et al. An efficient and secure arbitrary N-party quantum key agreement protocol using Bell states. International Journal of Theoretical Physics, 2018, 57(1): 195 -207.
[24] LIU L J, LI Z H. A verifiable quantum key agreement protocol based on six-qubit cluster states. The European Physical Journal D, 2021, 75(7): Article 193.
[25] ZHOU N R, MIN S Q, CHEN H Y, et al. Three-party quantum key agreement protocol with seven-qubit entangled states. International Journal of Theoretical Physics, 2018, 57(11): 3505 -3513.
[26] MIN S Q, CHEN H Y, GONG L H. Novel multi-party quantum key agreement protocol based on entanglement swapping with G-like states and Bell states. International Journal of Theoretical Physics, 2018, 57(6): 1811 -1822.
[27] ZHAO X Q, ZHOU N R, CHEN H Y, et al. Multiparty quantum key agreement protocol with entanglement swapping. International Journal of Theoretical Physics, 2019, 58(2): 436 -450.
[28] ZHU H F, LIU T H, WANG C N. A one-round quantum mutual authenticated key agreement protocol with semi-honest server using three-particle entangled states. International Journal of Theoretical Physics, 2021, 60(3): 929 -943.
[29] ZHU H F, WANG C N, LI Z X. Semi-honest three-party mutual authentication quantum key agreement protocol based on GHZ-like state. International Journal of Theoretical Physics, 2021, 60(1): 293 -303.
[30] WANG M M, HAN R F, GONG L M. Multiparty semiquantum key agreement without entanglement. Communications in Theoretical Physics, 2020, 72(6): Article 065107.
[31] ZHOU N R, ZHU K N, WANG Y Q. Three-party semi-quantum key agreement protocol. International Journal of Theoretical Physics, 2020, 59(3): 663 -676.
[32] LI H H, GONG L H, ZHOU N R. New semi-quantum key agreement protocol based on high-dimensional single-particle states. Chinese Physics B, 2020, 29(11): Article 10304.
[33] LIU C, CHENG S, LI H H, et al. New semi-quantum key agreement protocol based on X-type entangled states. International Journal of Theoretical Physics, 2022, 61(3): Article 60.
[34] TANG J, SHI L, WEI J H. Controlled quantum key agreement based on maximally three-qubit entangled states. Modern Physics Letters B, 2020, 34(18): Article 2050201.
[35] YIN X R, MA W P, LIU W Y. Three-party quantum key agreement with two-photon entanglement. International Journal of Theoretical Physics, 2013, 52(11): 3915 -3921.
[36] HUANG W C, YANG Y K, JIANG D, et al. Designing secure quantum key agreement protocols against dishonest participants. International Journal of Theoretical Physics, 2019, 58(12): 4093 -4104.
[37] CAO H, MA W P. Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Information Processing, 2018, 17(9): Article 219.
[38] ABULKASIM H, MASHATAN A, GHOSE S. Secure multiparty quantum key agreement against collusive attacks. Scientific Reports, 2021, 11(1): Article 9456.
[39] CHEN X B, XU G, YANG Y X, et al. Centrally controlled quantum teleportation. Optics Communications, 2010,
283(23): 4802 -4809.
[40] ZHOU R G, LING C P. Asymmetric cyclic controlled quantum teleportation by using nine-qubit entangled state. International Journal of Theoretical Physics, 2021, 60(9): 3435 -3459.
[41] JENNEWEIN T, SIMON C, WEIHS G, et al. Quantum cryptography with entangled photons. Physical Review Letters, 2000, 84(20): 4729 -4732.
[42] CABELLO A. Quantum key distribution in the Holevo limit. Physical Review Letters, 2000, 85(26): 5635 -5638.
|