1. Kampke T, Kober R. Nonparametric image segmentation. Pattern Analysis and Applications, 1998, 1(3): 145-154
2. Zhu C M, Gao D Q. A modified kernel clustering method with multiple factors. Pattern Analysis and Applications, 2015, 18(4): 871-886
3. Li Q H, Ural S, Anderson J. A fuzzy mean-shift approach to lidar waveform decomposition. IEEE Trans on Geoscience and Remote Sensing, 2016, 54(12): 1-10
4. Bezdek J C, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 1984, 10(2/3): 191-203
5. Chaira T. A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 2011, 11(2): 1711-1717
6. Pham T H, Son L H. Picture fuzzy clustering: a new computational intelligence method. Soft Computing, 2016, 20(9): 3549-3562
7. Sun J M, Wu C M. Regularized picture fuzzy clustering and its robust segmentation algorithm. Computer Engineering and Applications, 2019, 55(11): 179-186 (in Chinese)
8. Szilagyi L, Benyo Z. Szilagyi S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Vol 1, 2003, Sept 17-21, Cancun, Mexico. Piscataway, NJ, USA: IEEE, 2004: 724-726
9. Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans on Image Processing, 2010, 19(5): 1328-1337
10. Ahmed M N, Yamany S M, Mohamed N. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans on Medical Imaging, 2002, 21(3): 193-199
11. Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans on Systems, Man, and Cybernetics: Part B (Cybernetics), 2004, 34(4): 1907-1916
12. Berget I, Mevik B H, Næs T. New modifications and applications of fuzzy C-means methodology. Computational Statistics & Data Analysis, 2008, 52(5): 2403-2418
13. Han B, Wu Y Q. A novel active contour model driven by J-divergence entropy for SAR river image segmentation. Pattern Analysis and Applications, 2018, 21(3): 613-627
14. Saha A, Das S. Geometric divergence based fuzzy clustering with strong resilience to noise features. Pattern Recognition Letters, 2016, 79: 60-67
15. Saha A, Das S. Stronger convergence results for the center-based fuzzy clustering with convex divergence measure. IEEE Trans on Cybernetics, 2018, 49(12): 4229-4242
16. Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217
17. Banerjee A, Merugu S, Dhillon I, et al. Clustering with Bregman divergences. Proceedings of the 2004 SIAM International Conference on Data Mining, 2004, Apr 22-24, Lake Buena Vista, FL, USA. 2004: 234-245
18. Wu J J, Xiong H, Liu C, et al. A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means. IEEE Trans on Fuzzy Systems, 2012, 20(3): 557-571
19. Miyagishi K, Ichihashi H, Honda K. Fuzzy c-means clustering with regularization by K-L information. Journal of Japan Society for Fuzzy Theory and Systems, 2001, 13(4): 406-417
20. Krishnapuram R, Keller J M. A possibilistic approach to clustering. IEEE Trans on Fuzzy Systems, 1993, 1(2): 98-110
21. Dave R N. Robust fuzzy clustering algorithms. Proceedings of the 2nd IEEE International Conference on Fuzzy Systems: Vol 2, 1993, Mar 28-Apr 1, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 1993: 1281-1286
22. Gharieb R R, Gendy G. Fuzzy C-means with a local membership KL distance for medical image segmentation. Proceedings of the 2014 Cairo International Biomedical Engineering Conference (CIBEC’14), 2014, Dec 11-13, Giza, Egypt. Piscataway, NJ, USA: IEEE, 2014
23. Vemuri B C, Liu M Z, Amari S I, et al. Total Bregman divergence and its applications to DTI analysis. IEEE Trans on Medical Imaging, 2011, 30(2): 475-483
24. Hua X Q, Cheng Y, Wang H Q, et al. Information geometry for covariance estimation in heterogeneous clutter with total Bregman divergence. Entropy, 2018, 20(4): Article 258
25. Wang J C, Wang H, Wu C M. Threshold method of C-V model based on total Bregman divergence. Application of Electronic Technique, 2014, 40(11): 139-142 (in Chinese)
26. Wang J C, Wu C M. Threshold segmentation method for C-V model based on parametric total Bregman divergence. Computer Applications and Software, 2015, 32(12): 179-183 (in Chinese)
27. Seal A. Karlekar A, Krejcar O, Gonzalo-Martin C. Fuzzy c-means clustering using Jeffreys-divergence based similarity measure. Applied Soft Computing, 2020, 88: Article 106016
28. Zheng J, You H J. Change detection with SAR image based on Radon transform and Jeffrey divergence. Journal of Radars, 2012, 1(2): 182-189 (in Chinese)
29. Vlachos M, Dermatas E. Fuzzy segmentation for finger vessel pattern extraction of infrared images. Pattern Analysis and Applications, 2015, 18(4): 901-919
30. Vimala S V, Vivekanandan K. A Kullback-Leibler divergence-based fuzzy C-means clustering for enhancing the potential of an movie recommendation system. SN Applied Sciences, 2019, 1(7): Article 698
31. Said A B, Hadjidj R, Foufou S. Cluster validity index based on Jeffrey divergence. Pattern Analysis and Applications, 2017, 20(1): 21-31
32. Chakraborty S, Das S. k-means clustering with a new divergence-based distance metric: Convergence and performance analysis. Pattern Recognition Letters, 2017, 100: 67-73
33. Sra S. Positive definite matrices and the S-divergence. Proceedings of the American Mathematical Society, 2015, 144(7): 2787-2797
34. Karlekar A, Seal A, Krejcar O, et al. Fuzzy k-means using non-linear S-distance. IEEE Access, 2019, 7: 55121-55131
35. Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 1952, 23(4): 493-507
36. Ruel J J, Ayres M P. Jensen's inequality predicts effects of environmental variation. Trends in Ecology & Evolution, 1999, 14(9): 361-366
37. Endres D M, Schindelin J E. A new metric for probability distributions. IEEE Trans on Information Theory, 2003, 49(7): 1858-1860
38. Lamberti P W, Majtey A P, Borras A, et al. Metric character of the quantum Jensen-Shannon divergence. Physical Review A, 2008, 77(5): Article 052311
39. Osán T M, Bussandri D G, Lamberti P W. Monoparametric family of metrics derived from classical Jensen-Shannon divergence. Physica A: Statistical Mechanics and its Applications, 2018, 495: 336-344
40. Wu K L, Yang M S. Alternative c-means clustering algorithms. Pattern Recognition, 2002, 35(10): 2267-2278
41. Wen C J, Zhan Y Z. Gauss-induced kernel fuzzy c-means clustering algorithm. Computer Applications and Software, 2017, 34(8): 257-264 (in Chinese)
42. Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, 2(1): 1-8
43. Bezdek J C. Pattern Recognition with fuzzy objective function algorithms. Advanced Applications in Pattern Recognition. Berlin, Germany: Springer, 1981: 203-239
44. Ultsch A. Clustering with SOM: U∗C. Proceedings of the 5th Workshop Self-Organizing Maps (WSOM’05), 2005, Sept 5-8, Paris, France. 2005: 75-82
45. Handl J, Knowles J D. An evolutionary approach to multiobjective clustering. IEEE Trans on Evolutionary Computation, 2007, 11(1): 56-76
46. Golub T R. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439): 531-537
47. Yan Y, Liu Y L. Unsupervised remote sensing image change detection based on fusion and IFLICM algorithm. Bulletin of Surveying and Mapping, 2018, (3): 25-31 (in Chinese)
48. Wu C M, Wu Q P. A robust image segmentation algorithm based on the improved picture fuzzy clustering method on picture fuzzy sets. Journal of Xi’an University of Posts and Telecommunications, 2017, 22(5): 37-43 (in Chinese)
49. Guo Y H, Sengur A. A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits, Systems, and Signal Processing, 2013, 32(4): 1699-1723
|