1. ZHANG S F, ZHU X Y, LEI Z, et al. Detecting face with densely connected face proposal network. Neurocomputing, 2018, 284: 119-127
2. ZHANG S F, WANG X B, LEI Z, et al. Faceboxes: A CPU real-time and accurate unconstrained face detector. Neurocomputing, 2019, 364: 297-309
3. WANG X B, ZHANG S F, WANG S, et al. Mis-classified vector guided softmax loss for face recognition. Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20), 2020, Feb 7-12, Honolulu, HI, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2020: 12241-12248
4. ZHANG S F, WEN L Y, SHI H L, et al. Single-shot scale-aware network for real-time face detection. International Journal of Computer Vision, 2019, 127(6): 537-559
5. CHI C, ZHANG S, XING J, et al. Selective refinement network for high performance face detection. Proceedings of the 33th AAAI Conference on Artificial Intelligence (AAAI’19), 2019, Jan 27-Feb 1, New York, NY, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2019: 8231-8238
6. YANG X, LUO W H, BAO L C, et al. Face anti-spoofing: Model matters, so does data. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 3507-3516
7. ALOTAIBI A, MAHMOOD A. Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal, Image and Video Processing, 2017, 11(4): 713-720
8. PINTO A, SCHWARTZ W R, PEDRINI H, et al. Using visual rhythms for detecting video-based facial spoof attacks. IEEE Transactions on Information Forensics and Security, 2015, 10(5): 1025-1038
9. BOULKENAFET Z, KOMULAINEN J, HADID A. Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Processing Letters, 2016, 24(2): 141-145
10. CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing. Proceedings of the 2012 International Conference of Biometrics Special Interest Group (BIOSIG’12), 2012, Sept 6-7, Darmstadt, Germany. Piscataway, NJ, USA: IEEE, 2012: 7p
11. PAN G, SUN L, WU Z H, et al. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. Proceedings of the IEEE 11th International Conference on Computer Vision, 2007, Oct 14-21, Rio de Janeiro, Brazil. Piscataway, NJ, USA: IEEE, 2007: 8p
12. TAN X Y, LI Y, LIU J, et al. Face liveness detection from a single image with sparse low rank bilinear discriminative model. Computer Vision: Proceedings of the 11th European Conference on Computer Vision (ECCV’10): Part VI, 2010, Sept 5-11, Heraklion, Greece. LNCS 6316. Berlin, Germany: Springer, 2010: 504-517
13. MÄÄTTÄ J, HADID A, PIETIKÄINEN M. Face spoofing detection from single images using texture and local shape analysis. IET Biometrics, 2012, 1(1): 3-10
14. OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
15. YANG J W, LEI Z, LIAO S C, et al. Face liveness detection with component dependent descriptor. Proceedings of the 2013 International Conference on Biometrics (ICB’13), 2013, Jun 4-7, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2013: 6p
16. SCHWARTZ W R, ROCHA A, PEDRINI H. Face spoofing detection through partial least squares and low-level descriptors. Proceedings of the 2011 IEEE International Joint Conference on Biometrics (IJCB’11), 2011, Oct 11-13, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2011: 8p
17. KIM W, SUH S, HAN J J. Face liveness detection from a single image via diffusion speed model. IEEE Transactions on Image Processing, 2015, 24(8): 2456-2465
18. BOULKENAFET Z, KOMULAINEN J, HADID A. Face anti-spoofing based on color texture analysis. Proceedings of the 2015 International Conference on Image Processing (ICIP’15), 2015, Sept 27-30, Quebec City, Canada. Piscataway, NJ, USA: IEEE, 2015: 2636-2640
19. PATEL K, HAN H, JAIN A K. Secure face unlock: Spoof detection on smartphones. IEEE Transactions on Information Forensics and Security, 2016, 11(10): 2268-2283
20. WEN D, HAN H, JAIN A K. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 746-761
21. XU Z Q, LI S, DENG W H. Learning temporal features using LSTM-CNN architecture for face anti-spoofing. Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR’15), 2015, Nov 3-6, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2015: 141-145
22. LI L, FENG X Y, BOULKENAFET Z, et al. An original face anti-spoofing approach using partial convolutional neural network. Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications (IPTA’15), 2016, Dec 12-15, Oulu, Finland. Piscataway, NJ, USA: IEEE, 2016: 6p
23. YANG J W, LEI Z , LI S Z . Learn convolutional neural network for face anti-spoofing. arXiv Preprint, arXiv:1408.5601, 2014
24. ATOUM Y, LIU Y J, JOURABLOO A, et al. Face anti-spoofing using patch and depth-based CNNs. Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB’17), 2017, Oct 1-4, Denver, CO, USA. Piscataway, NJ, USA: IEEE, 2017: 319-328
25. PATEL K, HAN H, JAIN A K. Cross-database face antispoofing with robust feature representation. Proceedings of the 11th Chinese Conference on Biometric Recognition (CCBR’16), 2016, Oct 14-16, Chengdu, China. LNIP 9967. Berlin, Germany: Springer, 2016: 611-619
26. LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 389-398
27. JOURABLOO A, LIU Y J, LIU X M. Face de-spoofing: Anti-spoofing via noise modeling. Proceedings of the 15th European Conference on Computer Vision (ECCV’18): Part XIII, 2018, Sept 8-14, Munich, Germany. LNCS 11217. Berlin, Germany: Springer, 2018: 290-306
28. FENG L T, PO L M, LI Y M, et al. Integration of image quality and motion cues for face anti-spoofing: A neural network approach. Journal of Visual Communication and Image Representation, 2016, 38(C): 451-460
29. LIU Y J, STEHOUWER J, JOURABLOO A, et al. Deep tree learning for zero-shot face anti-spoofing. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 4680-4689
30. ZHANG S F, LIU A J, WAN J, et al. Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(2): 182-193
31. LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17), 2017, Jul 21-26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 2117-2125
32. WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7794-7803
33. PARKIN A, GRINCHUK O. Recognizing multi-modal face spoofing with face recognition networks. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'19), 2019, Jun 16-17, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 1617-1623
34. YU Z T, QIN Y X, LI X B, et al. Multi-modal face anti-spoofing based on central difference networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'20), 2020, Jun 14-19, Seattle, WA, USA . Piscataway, NJ, USA: IEEE, 2020: 650-651
35. LIU A J, TAN Z C, LI X, et al. Static and dynamic fusion for multi-modal cross-ethnicity face anti-spoofing. arXiv Preprint, arXiv:1912.02340, 2019
36. HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770-778
37. HU J, SHEN L, SUN G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7132-7141
38. ZHANG S F, WANG X B, LIU A J, et al. A dataset and benchmark for large-scale multi-modal face anti-spoofing. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19) , 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 919-928
39. IU X L, LU R G, LIU W. Face liveness detection based on enhanced local binary patterns. Proceedings of the 2017 Chinese Automation Congress (CAC’17), 2017, Oct 20-22, Jinan, China. Piscataway, NJ, USA: IEEE, 2017: 6301-6305
40. PARVEEN S, AHMAD S M S, ABBAS N H, et al. Face liveness detection using dynamic local ternary pattern (DLTP). Computers, 2016, 5(2): 10-11
41. KIM W, SUH S, HAN J J. Face liveness detection from a single imagevia diffusion speed model. IEEE Transactions on Image Processing. 2015, 24(8): 2456-2465.
42. MÄÄTTÄ J, HADID A, PIETIKÄINEN M. Face spoofing detection from single images using micro-texture analysis. Proceedings of the 2011 IEEE International Joint Conference on Biometrics (IJCB’11), 2011, Oct 11-13, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2011
|