1. SUN D D, LIU L D, ZHENG A H, et al. Visual cognition inspired vehicle re-identification via correlative sparse ranking with multi-view deep features. Advances in Brain Inspired Cognitive Systems: Proceedings of the 9th International Conference on Brain Inspired Cognitive Systems (BICS'18), 2018, Jul 7-8, Xi'an, China. LNAI 10989. Berlin, Germany: Springer, 2018: 54-63
2. LAROCA R, ZANLORENSI L A, GONÇALVES G R, et al. An efficient and layout-independent automatic license plate recognition system based on the YOLO detector. ArXiv Preprint, ArXiv:1909.01754, 2019.
3. Montazzolli S, JUNG C. Real-time brazilian license plate detection and recognition using deep convolutional neural networks. Proceedings of the 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI'17), 2017, Oct 17-20, Niteroi, Brazil. Piscataway, NJ, USA: IEEE, 2017: Aeticle 5-62.
4. SILVA S M, JUNG C. R. License plate detection and recognition in unconstrained scenarios. Computer Vision: Proceedings of the 15th European Conference on Computer Vision (ECCV'18): Part XII, 2018, Sept 8-14, Munich, Germany. LNIP 11216. Berlin, Germany: Springer, 2018: 593-609.
5. LAROCA R, SEVERO E, ZANLORENSI L A, et al. A robust real-time automatic license plate recognition based on the YOLO detector. Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN'18), 2018, Jul 8-13, Rio de Janeiro, Brazil. Piscataway, NJ, USA: IEEE, 2018: 10p.
6. HAN J, YAO J, ZHAO J, et al. Multi-oriented and scale-invariant license plate detection based on convolutional neural networks. Sensors, 2019,19(5): Article 1175/1-19.
7. BULAN O, KOZITSKY V, RAMESH P, et al. Segmentation-and annotation-free license plate recognition with deep localization and failure identification. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2351-2363.
8. GONCALVES G R, DINIZ M A, LAROCA R, et al. Real-time automatic license plate recognition through deep multi-task networks. Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI'18), 2018, Oct 29-Nov 1, Parana, Brazil. Piscataway, NJ, USA: IEEE, 2018: 110-117.
9. GONCALVES G R, DINIZ M A, LAROCA R, et al. Multi-task learning for low-resolution license plate recognition. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: Proceedings of the 24th Iberoamerican Congress on Pattern Recognition (CIARP'19), 2019, Oct 28-31, Havana, Cuba. LNIP 11896. Berlin, Germany: Springer, 2019: 251-261.
10. LI H, WANG P, YOU M Y, et al. Reading car license plates using deep neural networks. Image and Vision Computing, 2018, 72: 14-23.
11. HSU G S, AMBIKAPATHI A, CHUNG S L, et al. Robust license plate detection in the wild. Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS'17), 2017, Aug 29-Sept 1, Lecce, Italy. Piscataway, NJ, USA: IEEE, 2017: 6p.
12. XIE L L, AHMAD T, JIN L W, et al. A new CNN-based method for multi-directional car license plate detection. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517.
13. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016.
14. REDMON J, FARHADI A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17), 2017, Jul 21-26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017.
15. REDMON J, FARHADI A. YOLOv3: An incremental improvement. arXiv e-Prints, arXiv:1804.02767, 2018.
16. BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv e-Prints, ArXiv:2004.10934, 2020.
17. ultralytics/yolov5: YOLOv5. https://github.com/ultralytics/yolov5
18. GE Z, LIU S T, WANG F, et al.YOLOX: Exceeding YOLO series in 2021. arXiv e-Prints, arXiv.2107.08430, 2021.
19. DU S, IBRAHIM M, SHEHATA M, et al. Automatic license plate recognition (ALPR): A state-of-the-art review. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 23(2): 311-325.
20. WANG W H, TU J Y. Research on license plate recognition algorithms based on deep learning in complex environment. IEEE Access, 2020, 8: 91661-91675.
21. YAO D H, ZHU W X, CHEN Y J, et al. Chinese license plate character recognition based on convolution neural network. Proceedings of the 2017 Chinese Automation Congress (CAC'17), 2017, Oct 20-22, Jinan, China. Piscataway, NJ, USA: IEEE, 2017: 1547-1552.
22. LIU Y J, HUANG H. Car plate character recognition using a convolutional neural network with shared hidden layers. Proceedings of the 2015 Chinese Automation Congress (CAC'15), 2015, Nov 27-29, Wuhan, China. Piscataway, NJ, USA: IEEE, 2015: 638-643.
23. ABDUSSALAM A, SUN S L, FU M X, et al. Robust model for Chinese license plate character recognition using deep learning techniques. Communications, Signal Processing, and Systems: Proceedings of the 2018 International Conference in Communications, Signal Processing, and Systems (CSPS'18), 2018, Jul 14-16, Dalian, China. LNEE 517. Berlin, Germany: Springer, 2018: 121-127.
24. ZANG D, CHAI Z L, ZHANG J Q, et al. Vehicle license plate recognition using visual attention model and deep learning, Journal of Electronic Imaging, 2015, 24(3): Article 033001/1-10.
25. LIU Y J, HUANG H, CAO J D, et al. Convolutional neural networks-based intelligent recognition of Chinese license plates. Soft Computing, 2018, 22: 2403-2419.
26. DUAN S M, HU W, LI R R, et al. Attention enhanced ConvNet-RNN for Chinese vehicle license plate recognition. Pattern Recognition and Computer Vision: Proceedings of the 1st Chinese Conference on Pattern Recognition and Computer Vision (PRCV'18): Part III, 2018, Nov 23-26, Guangzhou, China. LNIP 11257. Berlin, Germany: Springer, 2018: 417-428.
27. WANG J L, HUANG H, QIAN X H, et al. Sequence recognition of Chinese license plates. Neurocomputing, 2018, 317: 149-158.
28. ZHANG L J, WANG P, LI H, et al. A robust attentional framework for license plate recognition in the wild. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6967-6976.
29. HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
30. WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module. Computer Vision: Proceedings of the 15th European Conference on Computer Vision (ECCV'18): Part VII, 2018, Sept 8-14, Munich, Germany. LNIP 11211. Berlin, Germany: Springer, 2018: 3-19.
31. LI X, WANG W H, HU X L, et al. Selective kernel networks. Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 7253-7260
32. CAO Y, XU J R, LIN S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond. Proceeding of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW'19), 2019, Oct 27-28, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2019: 1971-1980.
33. WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020, Jun 13-19, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2020: 11531-11539.
34. MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module. Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV'21), 2021, Jan 3-8, Waikoloa, HI, USA. Piscataway, NJ, USA: IEEE, 2021.
35. ZHOU W G, LI H Q, LU Y J, et al. Principal visual word discovery for automatic license plate detection. IEEE Transactions on Image Processing, 2021, 21(9): 4269-4279.
36. HSU G S, CHEN J C, CHUNG Y Z. Application-oriented license plate recognition. IEEE Transactions on Vehicular Technology, 2021, 62 (2): 552-561.
37. YUAN Y L, ZOU W B, ZHAO Y, et al. A robust and efficient approach to license plate detection. IEEE Transactions on Image Processing, 2017, 26 (3): 1102-1114.
38. XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: A large dataset and baseline. Computer Vision: Proceedings of the 15th European Conference on Computer Vision (ECCV'18): Part XII, 2018, Sept 8-14, Munich, Germany. LNIP 11216. Berlin, Germany: Springer, 2018: 261-277.
39. LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector. Computer Vision: Proceedings of the 14th European Conference on Computer Vision (ECCV'16): Part I, 2016, Oct 11-14, Amsterdam, Netherlands. LNIP 9905. Berlin, Germany: Springer, 2016: 21-37.
40. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV'17), 2017, Oct 22-29, Venice, Italy. Piscataway, NJ, USA: IEEE, 2017.
41. ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection. Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 840-849.
42. KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection. Computer Vision: Proceeding of the 16th European Conference on Computer Vision (ECCV’20): Part XXV, 2020, Aug 23-28, Glasgow, UK. LNIP 12370. Berlin, Germany: Springer, 2020: 355-371
43. REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
44. LU X, LI B Y, YUE Y X, et al. Grid R-CNN. Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 7253-7260.
45. HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
46. CAI Z W, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
47. PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: Towards balanced learning for object detection. Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 7253-7260.
48. CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 4974-4983.
49. LAW H, DENG J, Cornernet: Detecting objects as paired keypoints. Computer Vision: Proceedings of the 15th European Conference on Computer Vision (ECCV'18): Part XII, 2018, Sept 8-14, Munich, Germany. LNIP 11216. Berlin, Germany: Springer, 2018: 734-750.
50. KONG T, SUN F K, LIU H P, et al. FoveaBox: Beyond anchor-based object detector. IEEE Transactions on Image Processing, 2020, 29: 7389-7398.
51. TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection. Proceeding of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW'19), 2019, Oct 27-28, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2019: 9626-9635.
52. YANG Z, LIU S H, HU H, et al. RepPoints: Point set representation for object detection. Proceeding of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW'19), 2019, Oct 27-28, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2019: 9657-9666.
53. DONG Z W, LI G X, LIAO Y, et al. CentripetalNet: Pursuing high-quality keypoint pairs for object detection. Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020, Jun 13-19, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2020: 10516-10525
54. ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020, Jun 13-19, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2020: 9756–9765.
|