References
[1] BRUCE V, YOUNG A. Chapter 4: Messages from facial movements. Face Perception. London, UK: Psychology Press, 2011: 1 -56.
[2] MARTIN C. The philosophy of deception. Oxford, UK: Oxford University Press, 2011.
[3] ZHAO G Y, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915 -928.
[4] LIONG S T, WONG K S. Micro-expression recognition using apex frame with phase information. Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Summit and Conferencen (APSIPA ASC'17), 2017, Dec 12 - 15, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2017: 534 -537.
[5] WANG Y, SEE J, PHAN R C W, et al. LBP with six intersection points: Reducing redundant information in LBP-TOP for micro-expression recognition. Computer Vision-ACCV 2014: Proceedings of the 12th Asian Conference on Computer Vision (ACCV'14),
2014, Nov 1 - 5, Singapore. LNIP 9003. Berlin, Germany: Springer, 2015: 525 -537.
[6] HUANG X H, WANG S J, ZHAO G Y, et al. Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW'15), 2015, Dec 7 - 13, Santiago, Chile. Piscataway, NJ, USA: IEEE, 2015: 1 -9.
[7] HUANG X H, ZHAO G Y, HONG X P, et al. Spontaneous facial micro-expression analysis using spatiotemporal completed local
quantized patterns. Neurocomputing, 2016, 175(Part A): 564 -578.
[8] LI Y T, HUANG X H, ZHAO G Y. Can micro-expression be recognized based on single apex frame? Proceedings of the 25th
IEEE International Conference on Image Processing (ICIP'18), 2018, Oct 7 - 10, Athens, Greece. Piscataway, NJ, USA: IEEE, 2018: 3094 -3098.
[9] GAN Y S, LIONG S T, YAU W C, et al. OFF-ApexNet on micro-expression recognition system. Signal Processing: Image Communication, 2019, 74: 129 -13.
[10] LIONG S T, GAN Y S, SEE J, et al. Shallow triple stream three-dimensional CNN ( STSTNet ) for micro-expression recognition system. Proceedings of the 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG'19), 2019, May 14 - 18, Lille, France. Piscataway, NJ, USA: IEEE, 2019: 1 -5.
[11] WANG M, DENG W H. Deep visual domain adaptation: A survey. Neurocomputing, 2018, 312: 135 -153.
[12] KAHOU S E, BOUTHILLIER X, LAMBLIN P, et al. EmoNets: Multimodal deep learning approaches for emotion recognition in
video. Journal on Multimodal User Interfaces, 2016, 10: 99 -111.
[13] LIU A B, YANG Y Q, SUN Q Y, et al. A deep fully convolution neural network for semantic segmentation based on adaptive
feature fusion. Proceedings of the 5th International Conference on Information Science and Control Engineering ( ICISCE'18 ),
2018, Jul 20 - 22, Zhengzhou, China. Piscataway, NJ, USA: IEEE, 2018: 1 -5.
[14] LIU P, HAN S Z, MENG Z B, et al. Facial expression recognition via a boosted deep belief network. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, Jun 23 - 28, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 1805 -1812.
[15] KIM Y, LEE H, PROVOST E M. Deep learning for robust feature generation in audiovisual emotion recognition. Proceedings
of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing ( ICASSP'13 ), 2013, May 26 - 31, Vancouver, Canada. Piscataway, NJ, USA: IEEE, 2013: 3687 -3691.
[16] PATEL D, HONG X P, ZHAO G Y. Selective deep features for micro-expression recognition. Proceedings of the 23rd International Conference on Pattern Recognition ( ICPR'16 ), 2016, Dec 4 - 8, Cancun, Mexico. Piscataway, NJ, USA: IEEE, 2016: 2259 -2264.
[17] KIM D H, BADDAR W J, JANG J, et al. Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition. IEEE Transactions on Affective Computing, 2019, 10 ( 2 ):
223 -236.
[18] SHAO J, QIAN Y S. Three convolutional neural network models for facial expression recognition in the wild. Neurocomputing,
2019, 355: 82 -92.
[19] SANG D V, DAT N V, THUAN D P. Facial expression recognition using deep convolutional neural networks. Proceedings of the 9th International Conference on Knowledge and Systems Engineering (KSE'17), 2017, Oct 19 - 21, Hue, Vietnam. Piscataway, NJ, USA: IEEE, 2017: 130 -135.
[20] LI S, DENG W D. Deep facial expression recognition: A survey. IEEE Transactions on Affective Computing, 2022, 13(3): 1195 -
1215.
[21] PHAM L, VU T H, TRAN T A. Facial expression recognition using residual masking network. Proceedings of the 25th International Conference on Pattern Recognition ( ICPR'20 ), 2021, Jan 10 -15, Milan, Italy. Piscataway, NJ, USA: IEEE, 2021: 4513 -4519.
[22] CUI R K, PLESTED J, LIU J X. Declarative residual network for robust facial expression recognition. Neural Information
Processing: Proceedings of the 27th International Conference on Neural Information Processing (ICONIP'20), 2020, Nov 18 -
22, Bangkok, Thailand. CCIS 1332. Berlin, Germany: Springer, 2020: 345 -352.
[23] YASMIN S, PATHAN R K, BISWAS M, et al. Development of a robust multi-scale featured local binary pattern for improved
facial expression recognition. Sensors, 2020, 20(18): Article 5391.
[24] ZAFEIRIOU S, ZHANG C, ZHANG Z Y, et al. A survey on face detection in the wild: Past, present and future. Computer
Vision and Image Understanding, 2015, 138: 1 -24.
[25] XU Y Z, YU G Z, WANG Y P, et al. A hybrid vehicle detection method based on Viola-Jones and HOG + SVM from UAV
images. Sensors, 2016, 16(8): Article 1325.
[26] KAMAROL S K A, JAWARD M H, PARKKINEN J, et al. Spatiotemporal feature extraction for facial expression recognition.
IET Image Processing, 2016, 10(7): 534 -541.
[27] LIDONG H, WEI Z, JUN W, et al. Combination of contrast limited adaptive histogram equalisation and discrete wavelet
transform for image enhancement. IET Image Processing, 2015, 9(10): 908 -915.
[28] ZHOU M, JIN K, WANG S Z, et al. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE
Transactions on on Biomedical Engineering, 2018: 65 ( 3 ): 521 -527.
[29] MIZUTANI Y, KURIKI H, KODAMA Y, et al. Enhanced universal filtered-DFTs-OFDM for long-delay multipath environment. IEICE Transactions on Communications, 2019, E103 - B(4): 467 -475.
[30] ZHANG N, QIN Q, YUAN H, et al. NTTU: An area-efficient low-power NTT-uncoupled architecture for NTT-based multiplication. IEEE Transactions on Computers, 2020, 69(4): 520 -533.
[31] RANJAN R, PATEL V M, CHELLAPPA R. HyperFace: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(1): 121 -135.
[32] FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 2017, 17(9): Article 2022.
[33] HAN S S, KIM M S, LIM W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep
learning algorithm. Journal of Investigative Dermatology, 2018, 138(7): 1529 -1538.
[34] WU Z F, SHEN C H, VAN DEN HENGEL A. Wider or deeper: Revisiting the ResNet model for visual recognition. Pattern Recognition, 2019, 90: 119 -133.
[35] ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks.
IEEE Signal Processing Letters, 2016, 23(10): 1499 -1503.
[36] YANG J C, WANG X J, HAN S J, et al. Improved real-time facial expression recognition based on a novel balanced and
symmetric local gradient coding. Sensors, 2019, 19(8): Article 1899.
[37] LI H F, LI Q. End-to-end training for compound expression recognition. Sensors, 2020, 20(17): Article 4727.
[38] VO T H, LEE G S, YANG H J, et al. Pyramid with super resolution for in-the-wild facial expression recognition. IEEE Access, 2020, 8: 131988 -132001.
[39] LIAN Z, LI Y, TAO J H, et al. Expression analysis based on face regions in real-world conditions. International Journal of
Automation and Computing, 2020, 17(1): 96 -107.
[40] PRAMERDORFER C, KAMPEL M. Facial expression recognition using convolutional neural networks: State of the art. arXiv Preprint, arXiv:1612. 02903, 2016.
[41] TANG Y C. Deep learning using linear support vector machines. Proceedings of the 30th International Conference on Machine
Learning (ICML'13), 2013, Jun 16 - 21, Atlanta, GA, USA. Cambridge, MA, USA: JMLR (Journal of Machine Learning Research). org, 2013: 1 -5.
[42] KIM B K, DONG S Y, ROH J, et al. Fusing aligned and non-aligned face information for automatic affect recognition in the wild: A deep learning approach. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'16), 2016, Jun 26-Jul 1, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 48 -57.
[43] MINAEE S, MINAEI M, ABDOLRASHIDI A. Deep-emotion: Facial expression recognition using attentional convolutional network. Sensors, 2021, 21(9): Article 3046.
[44] HUA W T, DAI F, HUANG L Y, et al. HERO: Human emotions recognition for realizing intelligent Internet of things. IEEE Access, 2019, 7: 24321 -24332.
[45] CONNIE T, AL-SHABI M, CHEAH W P, et al. Facial expression recognition using a hybrid CNN-SIFT aggregator. Multi-disciplinary Trends in Artificial Intelligence: Proceedings of the 11th International Workshop on Multi-disciplinary Trends in
Artificial Intelligence ( MIWAI'17 ), 2017, Nov 20 - 22, Gadong, Brunei. LNAI 10607. Berlin, Germany: Springer, 2017: 139 -149.
[46] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced
label distribution. Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI'16), 2016, Nov
12 -16, Tokyo, Japan. New York, NY, USA: ACM, 2016: 279 -283.
[47] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint, arXiv:1409. 1556, 2014.
[48] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770 -778.
[49] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR'17 ), 2017, Jul 21 - 26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 4700 -4708.
[50] BURKERT P, TRIER F, AFZAL M Z, et al. DeXpression: Deep convolutional neural network for expression recognition. arXiv Preprint, arXiv. 1509. 05371, 2016.
[51] LI S, DENG W H. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition. IEEE Transactions on Image Processing, 2019, 28(1): 356 -370.
[52] FAN Y R, LAM J C K, LI V O K. Multi-region ensemble convolutional neural network for facial expression recognition. Artificial Neural Networks and Machine Learning: Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN'18): Part I, 2018, Oct 4 - 7, Rhodes, Greece, LNTCS 11139. Berlin, Germany: Springer, 2018: 84 -94.
|