1. Edenhofer
O, Pichs-Madrugaet R, Sokonaal Y, et al. Summary for policymakers. Climate
Change 2014, Mitigation of Climate Change. Working Group III to the 5th
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland:
IPCC, 2014.
2. Fang
X, Misra S, Xue G L, et al. Smart Grid—the new and improved power grid: a
survey. IEEE Communications Surveys & Tutorials, 2012, 14(4): 944-980.
3. Nakamoto
S. Bitcoin: a peer-to-peer electronic cash system. Satoshi Nakamoto Institute
(SNI), 2008.
4. Yi S H, Li C, Li Q. A survey of
fog computing: concepts, applications, and issues. Proceedings of the 2015
Workshop on Mobile Big Data (Mobidata'15),
Jun 21, 2015, Hangzhou,
China. New York, NY, USA: ACM, 2015: 37-42.
5. Yang
R, Yu F R, Si P, et al. Integrated blockchain and edge computing systems: a
survey, some research issues and challenges. IEEE Communications Surveys &
Tutorials, 2019, 21(2): 1508-1532.
6. Gilad
Y, Hemo R, Micali S, et al. Algorand: scaling byzantine agreements for
cryptocurrencies. Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP'17), Oct 28-31, 2017, Shanghai, China. New
York, NY, USA: ACM, 2017: 51–68.
7. Yu
F R, Liu J M, He Y, et al. Virtualization for distributed ledger technology
(vDLT). IEEE Access, 2018, 6: 25019-25028.
8. Consensus
algorithm (BFT-DPOS). EOS.IO Technical White Paper v2. GitHub Inc, 2018
9. Vukolić
M. The quest for scalable blockchain fabric: proof-of-work vs BFT replication. Open Problems
in Network Security: Proceedings of the 2015 IFIP WG 11.4 International
Workshop on Open Problems in Network Security (iNetSec’15), Oct 29, 2015, Zurich, Switzerland. LNCS 9591. Berlin, Germany:
Springer, 2015: 112-125.
10. Dai
L, Jia Y J, Liang L, et al. Metric and control of system fairness in heterogeneous
networks. Proceedings
of the 23rd
Asia-Pacific Conference on Communications (APCC'17), Dec 11-13,
2017, Perth,
Australia.
Piscataway, NJ, USA: IEEE,
2017: 5p.
11. Gini
C. Variability and mutability. Journal of the Royal
Statistical Society, 1913, 76(6): 619-622.
12. Lin
Z Z., Wen F H, Ding Y, et al. Data-driven coherency identification for
generators based on spectral clustering. IEEE Trans on Industrial Informatics,
2018, 14(3): 1275-1285.
13 .Wu D F, Zeng G P, Meng L G, et
al. Gini coefficient-based task allocation for multi-robot systems with limited
energy resources. IEEE/CAA Journal
of Automatica Sinica,
2018, 5(1): 155-168.
14. Liu
M T, Yu R, Teng Y L, et al. Performance optimization for blockchain-enabled
industrial Internet of things (IIoT) systems: a deep reinforcement learning
approach. IEEE Trans on Industrial Informatics, 2019, 15(6): 3559-3570.
15. Van
Hasselt H, Guez A, Silver D. Deep reinforcement learning with double
Q-learning. Proceedings
of the 30th AAAI Conference on Artificial
Intelligence (AAAI'16): Vol
2, Feb 12-17, 2016, Phoenix, AZ, USA. Menlo
Park, CA, USA: American Association for Artificial Intelligence (AAAI), 2016: 2094–2100.
16. Bui
V H, Hussain A, Kim H M. Double deep Q-learning-based distributed operation of
battery energy storage system considering uncertainties. IEEE Trans on Smart
Grid, 2020, 11(1): 457-469.
|