[1] Wang J, Luo C, Huang H Q, et al. Transferring pre-trained deep CNNs for remote scene classification with general features learned from linear PCA network.
Remote Sensing, 2017, 9(3): Article 225
[2]Cheng G, Yang C Y, Yao X W, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans on Geoscience and Remote Sensing, 2018, 56(5): 2811-2821.
[3]Ding P, Zhang Y, Jia P, et al. A comparison: Different DCNN models for intelligent object detection in remote sensing images. Neural Processing Letters, 2019, 49(3): 1369-1379.
[4] Cheng G, Zhou P C, Han J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
[5] Sun H, Sun X, Wang H Q, et al. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1):109-113.
[6] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceeding of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, Jun 20-25, San Diego, CA, USA. Piscataway, NJ, USA: IEEE, 2005: 8p.
[7] Long Y, Gong Y P, Xiao Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS'12): Vol 1. Red Hook, NY, USA: Curran Associates Inc, 2012: 1097-1105.
[9] He S F, Lau R W H, Liu W X, et al. SuperCNN: A superpixelwise convolutional neural network for salient object detection. International Journal of Computer Vision, 2015, 115(3): 330-344.
[10] Bappy J H, Roy-Chowdhury A K. CNN based region proposals for efficient object detection. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP'16), 2016, Sept 25-28, Phoenix, AZ, USA. Piscataway, NJ, USA: IEEE, 2016: 3658-3662.
[11] Wang Y D, Deng W H. Self-restraint object recognition by model based CNN learning. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP'16), 2016, Sept 25-28, Phoenix, AZ, USA. Piscataway, NJ, USA: IEEE, 2016: 654-658.
[12]Alom M Z, Hasan M, Yakopcic C, et al. Improved inception-residual convolutional neural network for object recognition. Neural Computing and Applications, 2020, 32(1): 279-293.
[13] Zhang R Q, Yao J, Zhang K, et al. S-CNN ship detection from high-resolution remote sensing images. ISPRS--International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 423-430.
[14] Tajbakhsh N, Shin J Y, Gurudu S R, et al. Convolutional neural networks for medical image analysis: Fine tuning or full training?. IEEE Trans on Medical Imaging, 2016, 35(5): 1299.
[15]Lee J, Kim C, Kang S, et al. UNPU: A 50.6TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC'18), 2018, Feb 11-15, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2018: 3p.
[16] Temam O. A defect-tolerant accelerator for emerging high-performance applications. Proceedings of the 39th Annual International Symposium on Computer Architecture (ISCA'12), 2012, Jun 9-13, Portland, OR, USA. Piscataway, NJ, USA: IEEE, 2012: 356-367.
[17] Chen T S, Du Z D, Sun N H, et al. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGPLAN Notices, 2014, 49(4): 269-284.
[18]Manatunga D, Kim H, Mukhopadhyay S. SP-CNN: A scalable and programmable CNN-based accelerator. IEEE Micro, 2015, 35(5): 42-50.
[19] Chen Y J, Luo T, Liu S L, et al. DaDianNao: A machine-learning supercomputer. Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014, Dec 13-17, Cambridge, UK. Piscataway, NJ, USA: IEEE, 2015: 609-622.
[20] Luo T, Liu S L, Li L, et al. DaDianNao: A neural network supercomputer. IEEE Trans on Computers, 2017, 66(1): 73-88.
[21] Shin D, Lee J, Lee J, et al. DNPU: An energy-efficient deep-learning processor with heterogeneous multi-core architecture. IEEE Micro, 2018, 38(5): 85-93.
[22] Jouppi N P, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. Proceedings of the ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA'17), 2017, Jun 24-28, Toronto, Canada. Piscataway, NJ, USA: IEEE, 2017.
[23] Lin B, Zhao Y M, Huang X M. A CNN accelerator on FPGA using depthwise separable convolution. IEEE Trans on Circuits and Systems II: Express Briefs, 2018, 65(10): 1415-1419.
[24] Ma Y F, Cao Y, Vrudhula S, et al. Optimizing the convolution operation to accelerate deep neural networks on FPGA. IEEE Trans on Very Large Scale Integration (VLSI) Systems, 2018: 26(7): 1354-1367.
[25] Chang J W , Kang K W , Kang S J . An energy-efficient FPGA-based deconvolutional neural networks accelerator for single image super-resolution. IEEE Trans on Circuits and Systems for Video Technology, 2020, 30(1): 281-295.
[26] https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
[27] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211-252.
[28] Viitaniemi V, Laaksonen J. Spatial extensions to bag of visual words. Proceedings of the 8th ACM International Conference on Image and Video Retrieval (CIVR'09), 2009 Jul 8-10, Santorini Island, Greece. New York, NY, USA: ACM, 2009: 8p
[29] Shen Y M, Ferdman M, Milder P. Overcoming resource underutilization in spatial CNN accelerators. Proceedings of the 26th International Conference on Field Programmable Logic and Applications (FPL'16), 2016, Aug 29-Sept 2, Lausanne, Switzerland. Piscataway, NJ, USA: IEEE, 2016: 4p.
[30] Suda N, Chandra V, Dasika G, et al. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Array (FPGA'16), 2016, Feb 21-23, Monterey, CA, USA. New York, NY, USA: ACM, 2016: 16-25.
[31] Chen Y H, Krishna T, Emer J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127-138.
|