1. Wayman J L. Biometrics in identity management systems. IEEE Security and Privacy, 2008, 6(2): 30 -37
2. Liu C X. The development trend of evaluating face-recognition technology. Proceedings of the 2014 International Conference on Mechatronics and Control (ICMC'14), 2014, Jul 3 - 5, Jinzhou, China. Piscataway, NJ, USA: IEEE, 2014: 1540 -1544
3. Zhu Y L, Chen S C. Sub-image method based on feature sampling and feature fusion for face recognition. Journal of Software, 2012, 23(12): 3209 -3220 (in Chinese)
4. Best-Rowden L, Han H, Otto C, et al. Unconstrained face recognition: identifying a person of interest from a media
collection. IEEE Transactions on Information Forensics and Security, 2014, 9(12): 2144 -2157
5. Klare B F, Klein B, Taborsky E, et al. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'15), 2015, Jun 7 -12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 1931 -1939
6. Boutellaa E, Boulkenafet Z, Komulainen J, et al. Audiovisual synchrony assessment for replay attack detection in talking face biometrics. Multimedia Tools and Applications, 2016, 75 (9): 5329 -5343
7. Zhang J, Yan Y, Lades M. Face recognition: eigenface, elastic matching, and neural nets. Proceedings of the IEEE, 1997, 85(9): 1423 -1435
8. Albiol A, Monzo D, Martin A, et al. Face recognition using HOG -EBGM. Pattern Recognition Letters, 2008, 29(10): 1537 -1543
9. Yan L, Hu X P. Face anti-spoofing based on context and OCSVM. Application of Electronic Technique, 2020, 46(6): 32 - 35 (in Chinese)
10. Chen H N, Chen Y W, Tian X, et al. A cascade face spoofing detector based on face anti-spoofing R - CNN and improved retinex LBP. IEEE Access, 2019, 7: 170116 -170133
11. Cao Y, Tu L, Wu L F. Face liveness detection using gray level co-occurrence matrix and wavelets analysis in identity authentication. Journal of Signal Processing, 2014, 30 (7): 830 - 835 (in Chinese)
12. Wen D, Han H, Jain A K. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 746 -761
13. Boulkenafet Z, Komulainen J, Hadid A. Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1818 -1830
14. Tirunagari S, Poh N, Windridge D, et al. Detection of face spoofing using visual dynamics. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 762 -777
15. Freitas P T, Komulainen J, Anjos A, et al. Face liveness detection using dynamic texture. Eurasip Journal on Image and Video Processing, 2014(1): 1 -2
16. Akbulut Y, Sengur A, Budak U, et al. Deep learning based face liveness detection in videos. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP'17), 2017, Sept 16 - 17, Malatya, Turkey. Piscataway, NJ, USA: IEEE, 2017: 1 -4
17. Garg S, Mittal S, Kumar P, et al. DeBNet: multilayer deep network for liveness detection in face recognition system.
proceedings of the 7th International Conference on Signal Processing and Integrated Networks (SPIN'20), 2020, Feb 27 -28, Noida, India. Piscataway, NJ, USA: IEEE, 2020: 1136 -1141
18. Sun W Y, Song Y, Chen C S, et al. Face spoofing detection based on local ternary label supervision in fully convolutional networks. IEEE Transactions on Information Forensics and Security, 2020, 15: 3181 -3196
19. Xu Z Q, Li S, Deng W H. Learning temporal features using LSTM-CNN architecture for face anti-spoofing. Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR'15), 2015, Nov 3 - 6, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2015: 141 -145
20. Atoum Y, Liu Y J, Jourabloo A, et al. Face anti-spoofing using patch and depth-based CNNs. Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB'17), 2017, Oct 1 - 4, Denver, CO, OSA. Piscataway, NJ, USA: IEEE, 2017: 319 -328
21. Ma Y K, Wu L F, Jian M, et al. Algorithm to generate adversarial examples for face-spoofing detection. Journal of Software, 2019, 30(2): 469 -480 (in Chinese)
22. Kuang H F, Ji R R, Liu H, et al. Multi-modal multi-layer fusion network with average binary center loss for face anti-spoofing. Proceedings of the 27th ACM International Conference on Multimedia (MM'19), 2019, Oct 21 -25, 2019, Nice, France. New York, NY, USA: ACM, 2019: 48 -56
23. Kim T Y, Lee K M, Lee S U, et al. Occlusion invariant face recognition using two-dimensional PCA. Advances in Computer Graphics and Computer Vision, 2007, 4: 305 -315
24. Song L X, Gong D H, Li Z F, et al. Occlusion robust face recognition based on mask learning with pairwise differential siamese network. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV'19), 2019, Oct 27-Nov 2, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2019: 773 -782
25. Jongsun K, Jongmoo C, Juneho Y, et al. Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1977 -1981
26. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770 -778
27. Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527 -1554
28. Pang J M, Chen K, Shi J P, et al, Libra R - CNN: towards balanced learning for object detection. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15 - 20, Long Beach, CA,
USA. Piscataway, NJ, USA: IEEE, 2019: 821 -830
|