References
[1] YAO A C. Protocols for secure computations. Proceedings of the 23rd Annual Symposium on Foundations of Computer, 1982, Nov 3 -5, Chicago, IL, USA. Piscataway, NJ, USA: IEEE, 1982: 160 -164.
[2] LO H K. Insecurity of quantum secure computations. Physical Review A, 1997, 56(2): 1154 -1162.
[3] CREPEAU C, GOTTESMAN D, SMITH A. Secure multi-party quantum computation. Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC'02), 2002, May 19 -22, Montreal, Canada. New York, NY, USA: ACM, 2002: 643 -652.
[4] BEN-OR M, CREPEAU C, GOTTESMAN D, et al. Secure multiparty quantum computation with (only) a strict honest
majority. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), 2006, Oct 21 -24, Berkeley, CA, USA. Piscataway, NJ, USA: IEEE, 2006: 249 -260.
[5] LI X H, WANG Y K, HAN Y G, et al. Self-testing of symmetric three-qubit states. IEEE Journal on Selected Areas in
Communications, 2020, 38(3): 589 -597.
[6] WEI C Y, CAI X Q, WANG T Y, et al. Error tolerance bound in QKD-based quantum private query. IEEE Journal on Selected Areas in Communications, 2020, 38(3): 517 -527.
[7] YANG Y G, CAO W F, WEN Q Y. Secure quantum private comparison. Physica Scripta, 2009, 80(6): Article 065002.
[8] GUO F Z, GAO F, QIN S J, et al. Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Information Processing, 2013, 12(8): 2793 -2802.
[9] XU Q D, CHEN H Y, GONG L H, et al. Quantum private comparison protocol based on four-particle GHZ states. International Journal of Theoretical Physics, 2020, 59(6): 1798 -1806.
[10] ZHOU N R, XU Q D, DU N S, et al. Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Information Processing, 2021, 20(3): Article 124.
[11] YE C Q, LI J, CHEN X B, et al. Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Information Processing, 2021, 20(8): Article 262.
[12] LANG Y F. Quantum gate-based quantum private comparison. International Journal of Theoretical Physics, 2020, 59(3): 833 -840.
[13] JIA H Y, WEN Q Y, SONG T T, et al. Quantum protocol for millionaire problem. Optics Communications, 2011, 284 (1): 545 -549.
[14] LIN S, SUN Y, LIU X F, et al. Quantum private comparison protocol with d-dimensional Bell states. Quantum Information Processing, 2013, 12(1): 559 -568.
[15] LIU W, WANG Y B, SUI A N, et al. Quantum protocol for millionaire problem. International Journal of Theoretical Physics, 2019, 58(7): 2106 -2114.
[16] ZHANG W W, LI D, ZHANG K J, et al. A quantum protocol for millionaire problem with Bell states. Quantum Information Processing, 2013, 12(6): 2241 -2249.
[17] HE G P. Simple quantum protocols for the millionaire problem with a semi-honest third party. International Journal of Quantum Information, 2013, 11(2): Article 1350025.
[18] ZHOU Y H, SHI W M, YANG Y G. A quantum protocol for millionaire problem with continuous variables. Communications in Theoretical Physics, 2014, 61(4): 452 -456.
[19] DU J Z, CHEN X B, WEN Q Y, et al. Secure multiparty quantum summation. Acta Physica Sinica, 2007, 56(11): 6214 -6219 (in Chinese).
[20] CHEN X B, XU G, YANG Y X, et al. An efficient protocol for the secure multi-party quantum summation. International Journal of Theoretical Physics, 2010, 49(11): 2793 -2804.
[21] WU W Q, MA X X. Multi-party quantum summation without a third party based on d-dimensional Bell states. Quantum Information Processing, 2021, 20(6): Article 200.
[22] LIU W, WANG Y B, FAN W Q. An novel protocol for the quantum secure multi-party summation based on two-particle Bell states. International Journal of Theoretical Physics, 2017, 56(9): 2783 -2791.
[23] GAN Z G. Improvement of quantum protocols for secure multi-party summation. International Journal of Theoretical Physics, 2020, 59(10): 3086 -3092.
[24] DEUTSCH D E, BARENCO A, EKERT A. Universality in quantum computation. Proceedings of the Royal Society of
London. Series A: Mathematical and Physical Sciences, 1995, 449(1937): 669 -677.
[25] BRAVYI S, KITAEV A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 2005, 71(2): Article 022316.
[26] CHEN X B, DOU Z, XU G, et al. A kind of universal quantum secret sharing protocol. Scientific Reports, 2017, 7(1): Article 39845.
[27] CHEN X B, DOU Z, XU G, et al. A class of protocols for quantum private comparison based on the symmetry of states. Quantum Information Processing, 2014, 13(1): 85 -100.
[28] AKSIT M, CHOUKAIR Z. Dynamic, adaptive and reconfigurable systems overview and prospective vision. Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, 2003, May 19 -22, Providence, RI, USA. Piscataway, NJ, USA: IEEE, 2003: 84 -89.
[29] DOU Z, CHEN X B, XU G, et al. An attempt at universal quantum secure multi-party computation with graph state. Physica Scripta, 2020, 95(5): Article 055106.
[30] YANG K, HUANG L, YANG W, et al. Quantum teleportation via GHZ-like state. International Journal of Theoretical Physics, 2009, 48(2): 516 -521.
[31] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered
complete? Physical Review, 1935, 47(10): 777 -780.
[32] DUR W, VIDAL G, CIRAC J I. Three qubits can be entangled in two inequivalent ways. Physical Review A, 2000, 62 (6): Article 062314.
[33] NASERI M, RAJI M A, HANTEHZADEH M R, et al. A scheme for secure quantum communication network with
authentication using GHZ-like states and cluster states controlled teleportation. Quantum Information Processing, 2015, 14(11): 4279 -4295.
[34] NIELSEN M A, CHUANG I L. Quantum computation and quantum information. Cambridge, MA, USA: Cambridge
University Press, 2002.
[35] HUANG W, WEN Q Y, LIU B, et al. Quantum anonymous ranking. Physical Review A, 2014, 89(3): Article 032325.
[36] LIN S, GUO G D, HUANG F, et al. Quantum anonymous ranking based on the Chinese remainder theorem. Physical Review A, 2016, 93: Article 012318.
[37] MAKAROV V, ANISIMOV A, SKAAR J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 2006, 74(2): Article 022313.
[38] JAIN N, STILLER B, KHAN I, et al. Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 2016, 57(3): 366 -387.
[39] QI B, FUNG C H F, LO H K, et al. Time-shift attack in practical quantum cryptosystems. Quantum Information and
Computation, 2007, 7(1): 73 -82.
[40] LI Y B, QOIN S J, YUAN Z, et al. Quantum private comparison against decoherence noise. Quantum Information Processing, 2013, 12(6): 2191 -2205.
[41] XU G, CHEN X B, DOU Z, et al. A novel protocol for multiparty quantum key management. Quantum Information
Processing, 2015, 14(8): 2959 -2980.
[42] BENNETT C H, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 2014, 560(1): 7 -11.
[43] LO H K, CHAU H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050 -2056.
[44] SHOR P W, PRESKILL J. Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 2000, 85(2): 441 -444.
[45] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145 -195.
[46] CHANG Y J, TSAI C W, HWANG T. Multi-user private comparison protocol using GHZ class states. Quantum Information Processing, 2013, 12(2): 1077 -1088.
[47] CAO H, MA W P, LU L D, et al. Multi-party quantum privacy comparison of size based on d-level GHZ states. Quantum Information Processing, 2019, 18(9): Article 287.
|