1. DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’19), 2019, Jun 2-7, Minneapolis, MN, USA. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 4171-4186.
2. OLIINYK V A, VYSOTSKA V, BUROV Y, et al. Propaganda detection in text data based on NLP and machine learning. Proceedings of the 2nd International Workshop on Modern Machine Learning Technologies and Data Science (MoMLeT+DS’20): Vol 1 (Main Conference), 2020, Jun 2-3, Lviv-Shatsk, Ukraine, 2020: 132-144.
3. HÉNAFF O J, SRINIVAS A, DE FAUW J, et al. Data-efficient image recognition with contrastive predictive coding. Proceedings of the 37th International conference on machine learning (ICML’20), 2020, Jul 13-18, Vienna, Austria. PMLR 119. New York, NY, USA: ACM, 2020: 4182-4192.
4. WEYAND T, ARAUJO A, CAO B, et al. Google landmarks dataset v2--A large-scale benchmark for instance-level recognition and retrieval. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020, Jun 13-19, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2020: 2575-2584.
5. TAIGMAN Y, YANG M, RANZATO M A, et al. DeepFace: Closing the gap to human-level performance in face verification. Proceedings of the 2014 IEEE Conference Conference on Computer Vision and Pattern Recognition (CVPR’14), 2014, Jun 23-28, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 1701-1708.
6. SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR’15), 2015, Jun 7-12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 815-823.
7. DHIMAN G, JUNEJA S, VIRIYASITAVAT W, et al. A novel machine-learning-based hybrid CNN model for tumor identification in medical image processing. Sustainability, 2022, 14(3): Article 1447.
8. CHEN M, HAO Y X, HWANG K, et al. Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 2017, 5: 8869-8879
9. LEO M, SHARMA S, MADDULETY K. Machine learning in banking risk management: A literature review. Risks, 2019, 7(1): Article 29.
10. YURTSEVER E, LAMBERT J, CARBALLO A, et al. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 2020, 8: 58443-58469.
11. CARLINI N, LIU C, ERLINGSSON Ú, et al. The secret sharer: Evaluating and testing unintended memorization in neural networks. Proceedings of the 28th USENIX Security Symposium (SEC'19). 2019, Aug 14-16, Santa Clara, CA, USA. Berkeley, CA, USA: USENIX Association, 2019: 267-284.
12. SONG C Z, RISTENPART T, SHMATIKOV V. Machine learning models that remember too much. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17), 2017, Oct 30-Nov 3, Dallas, TX, USA. New York, NY, USA: ACM, 2017: 587-601.
13. ZHANG C Y, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 2021, 64(3): 107-115.
14. SHOKRI R, STRONATI M, SONG C Z, et al. Membership inference attacks against machine learning models. Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP’17), 2017, May 22-26, San Jose, CA, USA. Piscataway, NJ, USA: IEEE, 2017: 3-18.
15. SALEM A, ZHANG Y, HUMBERT M, et al. Ml-leaks: Model and data independent membership inference attacks and defenses on machine learning models. arXiv Preprint, arXiv:1806.01246, 2018.
16. YU D, ZHANG H S, CHEN W, et al. How does data augmentation affect privacy in machine learning? Proceedings of the 35th AAAI Conference on Artificial Intelligence, The 33rd Conference on Innovative Applications of Artificial Intelligence, The 11th Symposium on Educational Advances in Artificial Intelligence (AAAI’21/IAAI’21/EAAI’21), 2021, Feb 2-9, Vancouver, Canada. Palo Alto, CA, USA: AAAI Press, 2021: 10746-10753
17. TRAMÈR F, ZHANG F, JUELS A, et al. Stealing machine learning models via prediction APIs. Proceedings of the 25th USENIX Security Symposium (SEC'16), 2016, Aug 10-12, Austin, TX, USA. Berkeley, CA, USA: USENIX Association, 2016: 601-618.
18. YU H G, YANG K C, ZHANG T, et al. CloudLeak: Large-scale deep learning models stealing through adversarial examples. Proceedings of the 27th Annual Network and Distributed Systems Security Symposium (NDSS’20), 2020, Feb 23-26, San Diego, CA. Reston, VA, USA: The Internet Society, 2020: DOI:10.14722/ndss.2020.24178
19. SANYAL S, ADDEPALLI S, BABU R V. Towards data-free model stealing in a hard label setting. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022, Jun 18-24, New Orleans, LA, USA. Piscataway, NJ, USA: IEEE, 2022: 15284-15293.
20. FREDRIKSON M, JHA S, RISTENPART T. Model inversion attacks that exploit confidence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS’15), 2015, Oct 12-16, Denver, CO, USA. New York, NY, USA: ACM, 2015: 1322-1333.
21. ZHANG Y H, JIA R X, PEI H Z, et al. The secret revealer: Generative model-inversion attacks against deep neural networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020, Jun 13-19, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2020: 253-261.
22. KAHLA M, CHEN S, JUST H A, et al. Label-only model inversion attacks via boundary repulsion. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022, Jun 18-24, New Orleans, LA, USA. Piscataway, NJ, USA: IEEE, ,2022: 15025-15033.
23. LONG Y H, BINDSCHAEDLER V, WANG L, et al. Understanding membership inferences on well-generalized learning models. arXiv Preprint, arXiv:1802.04889, 2018.
24. HAYES J, MELIS L, DANEZIS G, et al. Logan: Evaluating information leakage of generative models using generative adversarial networks. arXiv Preprint, arXiv:1705.07663, 2017.
25. NASR M, SHOKRI R, HOUMANSADR A. Machine learning with membership privacy using adversarial regularization. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS’18), 2018, Oct 15-19, Toronto, Canada. New York, NY, USA: ACM, 2018: 634-646.
26. LINDBO L A B, SØNDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric. Proceedings of the 33rd International Conference on Machine Learning (ICML’16), 2016, Jun 19-24, New York, NY, USA. The Journal of Machine Learning Research (JMLR) 48. 2016: 1558-1566
27. GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139-144.
28. HU H S, SALCIC Z, SUN L C, et al. Membership inference attacks on machine learning: A survey. ACM Computing Surveys, 2022, 54(11s): Article 235.
29. WANG Z H, HUANG N, SUN F, et al. Debiasing learning for membership inference attacks against recommender systems. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’22), 2022, Aug 14-18, Washington, DC, USA. New York, NY, USA: ACM, 2022: 1959-1968.
30. SHAFRAN A, PELEG S, HOSHEN Y. Membership inference attacks are easier on difficult problems. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV'21), 2021, Oct 10-17, Montreal, Canada. Piscataway, NJ, USA: IEEE, 2021: 14820-14829.
31. HE Y, RAHIMIAN S, SCHIELE B, et al. Segmentations-leak: Membership inference attacks and defenses in semantic image segmentation. Computer Vision: Proceedings of the 16th European Conference on Computer Vision (ECCV’20): Part XXIII, 2020, Aug 23-28, Glasgow, UK. LNCS 12370. Berlin, Germany: Springer, 2020: 519-535.
32. HU P Y, WANG Z H, SUN R X, et al. M4I: Multi-modal models membership inference. Advances in Neural Information Processing Systems 35: Proceedings of the 36th International Conference on on Neural Information Processing Systems (NIPS’22), 2022, Nov 28-Dec 9, New Orleans, LA, USA. Red Hook, NY, USA: Curran Associates Inc, 2022: 1867-1882
33. MIAO Y T, CHEN C, PAN L, et al. No-label user-level membership inference for ASR model auditing. Computer Security: Proceedings of the 27th European Symposium on Research in Computer Security (ESORICS’22): Part II, 2022, Sept 26-30, Copenhagen, Denmark. LNCS 13555. Berlin, Germany: Springer, 2022: 610-628.
34. RAHIMIAN S, OREKONDY T, FRITZ M. Differential privacy defenses and sampling attacks for membership inference. Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security (AISec’21), 2021, Nov 15, Republic of Korea. New York, NY, USA: ACM, 2021: 193-202.
35. LI Z, ZHANG Y. Membership leakage in label-only exposures. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS '21), 2021, Nov 15-19, Republic of Korea. New York, NY, USA: ACM, 2021: 880-895
36. KINGMA D P, WELLING M. Auto-encoding variational Bayes. Proceedings of the 2nd International Conference on Learning Representations (ICLR’14), 2014, Apr 14-16, Banff, Canada. 2014: 14p.
37. CHOQUETTE-CHOO C A, TRAMER F, CARLINI N, et al. Label-only membership inference attacks. Proceedings of the 38th International Conference on Machine Learning (ICML’21), 2021, Jul 18-24, Virtual Event. PMLR 139. New York, NY, USA: ACM. 2021: 1964-1974.
38. RAHIMIAN S, OREKONDY T, FRITZ M. Sampling attacks: Amplification of membership inference attacks by repeated queries. arXiv Preprint, arXiv:2009.00395, 2020.
|