1. Liu C, Hamrick J B, Fisac J F, et al. Goal inference improves objective and perceived performance in human-robot collaboration.
Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’16), 2016, May 9 -13,
Singapore. 2016: 940 -948
2. Xu Y, Ahn C K, Shmaliy Y S, et al. Adaptive robust INS/ UWB- integrated human tracking using UFIR filter bank. Measurement,
2018, 123: 1 -7
3. Zhou X W, Zhu M L, Pavlakos G, et al. MonoCap: monocular human motion capture using a CNN coupled with a geometric prior.
IEEE Transcations on Pattern Analysis and Machine Intelligence, 2019, 41(4): 901 -914
4. Girdhar R, Gkioxari G, Torresani L, et al. Detect-and-track: efficient pose estimation in videos. Proceedings of the 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018, Jun 18 - 22, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 350 -359
5. Han J H, Lee S J, Kim J H. Behavior hierarchy-based affordance map for recognition of human intention and its application to
human-robot interaction. IEEE Transactions on Human-Machine Systems, 2016, 46(5): 708 -722
6. Park J S, Park C, Manocha D. I-Planner: intention-aware motion planning using learning-based human motion prediction. The
International Journal of Robotics Research, 2019, 38(1): 23 -39
7. Unhelkar V V, Lasota P A, Tyroller Q, et al. Human-aware robotic assistant for collaborative assembly: integrating human
motion prediction with planning in time. IEEE Robotics and Automation Letters, 2018, 3(3): 2394 -2401
8. Mainprice J, Berenson D. Human-robot collaborative manipulation planning using early prediction of human motion. Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems ( IROS’13 ), 2013, Nov 3 - 7, Tokyo, Japan.
Piscataway, NJ, USA: IEEE, 2013: 299 -306
9. Muhlig M, Gienger M, Hellbach S, et al. Task-level imitation learning using variance-based movement optimization. Proceedings
of the 2009 IEEE International Conference on Robotics and Automation ( ICRA’09 ), 2009, May 12 - 17, Kobe, Japan. Piscataway, NJ, USA: IEEE, 2009: 1177 -1184
10. PérezD’Arpino C, Shah J A. Fast target prediction of human reaching motion for cooperative human鄄robot manipulation tasks
using time series classification. Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA’15),
2015, May 26 - 30, Seattle, WA, USA. Piscataway, NJ, USA: IEEE, 2015: 6175 -6182
11. Vasquez D, Fraichard T, Aycard O, et al. Intentional motion on-line learning and prediction. Machine Vision and Applications,
2008, 19(5/6): 411 -425
12. Ding H, Reiβig G, Wijaya K, et al. Human arm motion modeling and long-term prediction for safe and efficient human-robot-
interaction. Proceedings of the 2011 IEEE International Conference on Robotics and Automation ( ICRA’11), 2011, May 9 - 13,
Shanghai, China. Piscataway, NJ, USA: IEEE, 2011: 5875 -5880
13. Fuse T, Kamiya K. Statistical anomaly detection in human dynamics monitoring using a hierarchical Dirichlet process hidden
Markov model. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3083 -3092
14. Amor H B, Neumann G, Kamthe S, et al. Interaction primitives for human-robot cooperation tasks. Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA’14), 2014, May 31-Jun 7, Hong Kong, China. Piscataway, NJ, USA: IEEE, 2014: 2831 -2837
15 Maeda G, Ewerton M, Neumann G, et al. Phase estimation for fast action recognition and trajectory generation in human-robot
collaboration. International Journal of Robotics Research, 2017, 36(13/14): 1579 -1594
16. Wang Y W, Sheng Y X, Wang J, et al. Optimal collision-free robot trajectory generation based on time series prediction of human motion. IEEE Robotics and Automation Letters, 2018, 3 (1): 226 -233
17. Zhang W L, Chen X, Bae J, et al. Real-time kinematic modeling and prediction of human joint motion in a networked rehabilitation system. Proceedings of the 2016 American Control Conference (ACC’15), 2015, Jul 1 -3, Chicago, IL, USA. Piscataway, NJ, USA: IEEE, 2015: 5800 -5805
18. Choo B, Landau M, DeVore M, et al. Statistical analysis-based error models for the Microsoft Kinect (TM) depth sensor. Sensors, 2014, 14(9): 17430 -17450
19. Zhang S J, Liu Y Z. Prediction of moving target trajectory with sliding window polynomial fitting. Opto-electronic Engineering,
2003, 30(4): 24 -27 (in Chinese)
20. Zhou Z J, Chen J L, Shen H, et al. Trajectory prediction based on improved sliding window polynomial fitting prediction method. Proceedings of the 2017 International Symposium on Computational Intelligence and Design ( ISCID’17 ), 2017, Dec 9 - 10, Hangzhou China. Piscataway, NJ, USA: IEEE, 2016: 202 -205
|