1. Zhang X C, Zhao Z X, Zheng Y, et al. Prediction of taxi destinations using a novel data embedding method and ensemble
learning. IEEE Transactions on Intelligent Transportation System, 2020, 21(1): 68 -78
2. Magdy N, Sakr M A, Abdelkader T M. Review on trajectory similarity measures. Proceedings of the IEEE 7th International
Conference on Intelligent Computing and Information Systems (ICICIS’15), 2015, Dec 12 -14, Cairo, Egypt. Piscataway, NJ,
USA: IEEE, 2015: 613 -619
3. Zhang L, Zhang G X, Liang Z Z, et al. Mult-features taxi destination prediction with frequency domain processing. PLOS
One, 2018, 13(3): e0194629
4. Wang C, Li J T, He Y H, et al. Destination prediction based scheduling algorithms for message delivery in IoVs. IEEE Access,
2020, 8: 14965 -14976
5. Wu R Z, Luo G C, Shao J M, et al. Location prediction on trajectory data: a review. Big Data Mining and Analytics, 2018,
1(2): 108 -127
6. Bao J, Zheng Y. Location-based and preference-aware recommendation using sparse geo-social networking data.
Proceedings of the 20th ACM International Conference on Advances in Geographical Information Systems ( SIGSPATIAL GIS’12 ),
2012, Nov 6 - 9, Redondo Beach, CA, USA. New York, NY, USA: ACM, 2012: 199 -208
7. Al-Molegi A, Abreel M, Ghaleb B. STF-RNN: space time features-based recurrent neural network for predicting people next
location. Proceedings of the 2006 IEEE Symposium Series on Computational Intelligence (SSCI’16), 2016, Dec 6 -9, Athens,
Greece. Piscataway, NJ, USA: IEEE, 2016: 1 -7
8. Xiao Y L, Nian Q. Vehicle location prediction based on spatiotemporal feature transformation and hybrid LSTM neural
network. Information of MDPI, 2020,11(2): Article 84
9. de Brébisson A, SimonÉ, Auvolat A, et al. Artificial neural networks applied to taxi destination prediction. arXiv:1508.
00021, 2015
10. Xue A Y, Zhang R, Zheng Y, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such
prediction. Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE’13), 2013, Apr 8 - 12, Brisbane,
Australia. Piscataway, NJ, USA: IEEE, 2012: 254 -265
11. Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users. Personal and
Ubiquitous Computing, 2003, 7(5): 275 -286
12. Xue A Y, Qi J Z, Xie X, et al. Solving the data sparsity problem in destination prediction. The VLDB Journal, 2015, 24 (2):
219 -243
13. Besse P C, Guillouet B, Loubes J M, et al. Destination prediction by trajectory distribution-based model. IEEE Transactions on
Intelligent Transportation Systems, 2018, 19(8): 2470 -2481
14. Li W G, Zhao X M, Sun D C. Prediction of trajectory based on modified Bayesian inference. Journal of Computer Applications,
2013, 33(7): 1960 -1963
15. Choi S, Kim J, Yeo H. Attention-based recurrent neural network for urban vehicle trajectory prediction. Procedia Computer Science, 2019, 151: 327 -334
16. Rossi A, Barlacchi G, Bianchini M, et al. Modeling taxi drivers’ behaviour for the next destination prediction. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2980 -2989
17. Qian C Y, Jiang R Q, Long Y, et al. Vehicle trajectory modelling with consideration of distant neighbouring dependencies for
destination prediction. International Journal of Geographical Information Science, 2019, 33(10): 2011 -2032
18. Endo Y, Toda H, Nishida K, et al. Classifying spatial trajectories using representation learning. International Journal of Data Science and Analytics, 2016, 2: 107 -117
19. Endo Y, Toda H, Nishida K, et al. Deep feature extraction from trajectories for transportation mode estimation. Deep Feature
Extraction from Trajectories for Transportation Mode Estimation: Proceedings of the 20th Pacific-Asia Conference on Knowledge
Discovery and Data Mining ( PAKDD’16 ): Part Π, 2016 Apr 19 -22, Auckland, New Zealand. LNCS 9652. Berlin, Germany: Springer, 2016: 54 -66
20. LüJ M, Li Q, Sun Q H, et al. T-CONV: a convolutional neural network for multi-scale taxi trajectory prediction. Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp’18): Vol 1, 2018, Jan 15 -17, Shanghai,
China. Piscataway, NJ, USA: IEEE, 2018: 82 -89
21. Liu Q, Wu S, Wang L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts. Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI’16), 2016, Feb 12 -17, Phoenix, AZ, USA. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 2016: 194 -200
22. Fan W, Fu K, Wang Y, et al. A spatial-temporal-semantic neural network algorithm for location prediction on moving objects.
Algorithms, 2017, 10(2): Article 37
23. Xu F F, Yang J J, Liu H Z. Location prediction model based on ST-LSTM network. Computer Engineering, 2019, 45(9): 1 - 7
(in Chinese)
|