[1] ESHTAY M, FARI H, OBEID N. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems. Expert Systems with Application, 2018, 104: 134 152.
[2] LESHNO M, LIN V Y, PINKUS A, et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6): 861 867.
[3] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications. Neurocomputing, 2005, 70 (1/2/3): 489 501.
[4] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879 892.
[5] FENG G R, QIAN Z X, ZHANG X P. Evolutionary selection extreme learning machine optimization for regression. Soft Computing, 2012, 16 (9): 1485 1491.
[6] XU J T, ZHOU H M, HUANG G B. Extreme learning machine based fast object recognition. Proceedings of the 15th International Conference on Information Fusion, 2012, Jul 9  12, Singapore. Piscataway, NJ, USA: IEEE, 2012: 1490 1496.
[7] CAI W Q, NIAN R, HE B, et al. A fast sonarbased benthic object recognition model via extreme learning machine. Proceedings of the OCEANS 2015MTS/ IEEE Washington, 2015, Oct 19  22, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2015: 1 4.
[8] ERGUL U, BILHIN G. HCKBoost: hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification. Neurocomputing, 2019, 334: 100 113.
[9] ZHOU Y C, PENG J T, CHEN C L P. Extreme learning machine with composite kernels for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(6): 2351 2360.
[10] YANG J, YU H L, YANG X B, et al. Imbalanced extreme learning machine based on probability density estimation. Proceedings of the 9th International Workshop on Multi disciplinary Trends in Artificial Intelligence (MIWAI'15), 2015, Nov 13  15, Fuzhou, China. LNAI 9426. Berlin, Germany: Springer, 2015: 160 167.
[11] GAO M, HONG X, CHEN S, et al. Probability density function estimation based oversampling for imbalanced twoclass problems. Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN'12), 2012, Jun 10 15, Brisbane, Australia. Piscataway, NJ, USA: IEEE, 2012: 1 8.
[12] LI X D, XIE H R, WANG R, et al. Empirical analysis: stock market prediction via extreme learning machine. Neural Computing and Applications, 2016, 27(1): 67 78.
[13] XIONG Z B. Stock price prediction based on sparse Bayesian extreme learning machine. Journal of Jiaxing University, 2018, 30(5): 106 113 (in Chinese).
[14] RUMELHART D E, HINTON G E, WILLIAMS R J. Learningrepresentations by back propagating errors. Nature, 1986, 323(6088): 533 536.
[15] MICHE Y, SORJAMAA A, BAS P, et al. OPELM: optimally pruned extreme learning machine. IEEE Transactions on Neural Networks, 2010, 21(1): 158 162.
[16] MICHE Y, VAN HEESWIJK M, BAS P, et al. TROPELM: a doubleregularized ELM using LARS and Tikhonov regularization. Neurocomputing, 2011, 74(16): 2413 2421.
[17] DENG W Y, ZHENG Q H, CHEN L. Regularized extreme learning machine. Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining (CIDM'09), 2009, Mar 30  Apr 2, Nashville, TN, USA. Piscataway, NJ, USA: IEEE, 2009: 389 395.
[18] WANG Y B, LI D, DU Y, et al. Anomaly detection in traffic using L1norm minimization extreme learning machine. Neurocomputing, 2015, 149(1): 415 425.
[19] ZHOU S H, LIU X W, LIU Q, et al. Random Fourier extreme learning machine with L2,1 norm regularization. Neurocomputing, 2016, 174(6): 143 153.
[20] HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning: data mining, inference and prediction. Berlin, Germany: Springer, 2003.
[21] SHEN X, NIU L F, QI Z Q, et al. Support vector machine classifier with truncated pinball loss. Pattern Recognition, 2017, 68: 199 210.
[22] WANG L, JIA H D, LI J. Training robust support vector machine with smooth Ramp loss in the primal space. Neurocomputing, 2008, 71(13/14/15): 3020 3025.
[23] ZHAO Y P, SUN J G. Robust support vector regression in the primal. Neural Networks, 2008, 21(10): 1548 1555.
[24] SINGH A, POKHAREL R, PRINCIPE J. The Closs function for pattern classification, Pattern Recognition. 2014, 47(1): 441  453.
[25] ZHAO Y P, TAN J F, WANG J J, et al. Closs based extreme learning machine for estimating power of smallscale turbojet engine. Aerospace Science and Technology, 2019, 89: 407  419.
[26] GUPTA D, HAZARIKA B B, BERLIN M. Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Computing and Applications, 2020, 32(3/4): 12971  12998.
[27] BALASUNDARAM S, MEENA Y. Robust support vector regression in primal with asymmetric Huber loss. Neural Processing Letters, 2019, 49(3): 1399 1431.
[28] WANG K N, ZHONG P. Robust nonconvex least squares loss function for regression with outliers. KnowledgeBased Systems, 2014, 71: 290 302.
[29] XU G B, HU B G, PRINCIPE J C. Robust CLoss kernel classifiers. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 510 522.
[30] YUILLE A L, RANGARAJAN A. The concaveconvex procedure (CCCP). Neural Computation, 2003, 15(4): 915 936.
[31] DEMSAR J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7(1): 1  30.
