1. Ng C W, Ranganath S. Real-time gesture recognition system and application. Image and Vision Computing, 2002, 20 (13/14):
993 -1007
2. Kolahi A, Hoviattalab M, Rezaeian T, et al. Design of a marker-based human motion tracking system. Biomedical Signal Processing and Control, 2007, 2(1): 59 -67
3. Kirk A G, O’Brien J F, Forsyth D A. Skeletal parameter estimation from optical motion capture data. Computer Vision and Pattern
Recognition, 2005, 2(2): 782 -788
4. Rosales R, Athitsos V, Sclaroff S. 3D hand pose reconstruction using specialized mappings. Proceedings of the 8th IEEE
International Conference on Computer Vision (ICCV’01): Vol 1, 2001, Jul 7 - 14, Vancouver, Canada. Piscataway, NJ, USA:
IEEE, 2001: 378 -385
5.Oikonomidis I, Kyriazis N, Argyros A A. Efficient model-based 3D tracking of hand articulations using Kinect. Proceedings of the
22nd British Machine Vision Conference ( BMVC’11 ), 2011, Aug 29-Sep 2, Dundee, UK. Durham, UK: BMVA ( British Machine Vision Association) Press, 2011: 1 -11
6. Xu C, Cheng L. Efficient hand pose estimation from a single depth image. Proceedings of the 14th IEEE International Conference on Computer Vision, 2013, Dec 1 - 8, Sydney, Australia. Piscataway, NJ, USA: IEEE, 2013: 3456 -3462
7. Keskin C, Klraç F, Kara Y E, et al. Real time hand pose estimation using depth sensors. Proceedings of the 2011 IEEE
International Conference on Computer Vision Workshops ( ICCV Workshops’11 ), 2011, Nov 6 - 13, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2011: 1228 -1234
8. Huang X. An adaptive KLT algorithm for hand gesture tracking. Advanced Materials Research, 2013, 706/707/708: 623 -628
9. Bhuyan M K, Ghosh D, Bora P K. Hand motion tracking and trajectory matching for dynamic hand gesture recognition. Journal of
Experimental & Theoretical Artificial Intelligence, 2006, 18(4): 435 -447
10. Asaari M S M, Rosdi B A, Azmin S A. Adaptive Kalman filter incorporated eigenhand ( AKFIE ) for real-time hand tracking
system. Multimedia Tools and Applications, 2015, 74: 9231 -9257
11. Gong M G, Liang Y, Shi J, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing, 2013, 22(2): 573 -584
12. Peursum P, Venkatesh S, West G. A study on smoothing for particle-filtered 3D human body tracking. International Journal of
Computer Vision, 2010, 87(1/2): 53 -74
13.Shamaie A, Sutherland A. A dynamic model for real-time tracking of hands in bimanual movements. Gesture-Based Communication in Human-Computer Interaction: Proceedings of the 2003 International Gesture Workshop (GW’03), 2003, Apr 15 - 17, Genoa, Italy. LNCS 2915. Berlin, Germany: Springer, 2003: 172 -179
14. Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection. arXiv:2004. 10934, 2020
15. Redmon J, Farhadi A. YOLOv3: an incremental improvement. arXiv: 1804. 02767, 2018
16. Tao J, Wang H B, Zhang X Y, et al. An object detection system based on YOLO in traffic scene. Proceedings of the 6th
International Conference on Computer Science and Network Technology (ICCSNT’17), 2017, Oct 21 - 22, Dalian, China.
Piscataway, NJ, USA: IEEE, 2017: 315 -319
17. Roy S S, Haque A U, Neube R T J. Automatic diagnosis of melanoma from dermoscopic image using real-time object detection.
Proceedings of the 52nd Annual Conference on Information Sciences and Systems (CISS’18), 2018, Mar 21 -23, Princeton, NJ, USA. Piscataway, NJ, USA: IEEE, 2018: 1 -5
18. Yang H B, Liu P, Hu Y Z, et al. Research on underwater object recognition based on YOLOv3. Microsystem Technologies, 2020,
DOI: 10. 1007/ s00542 -019 -04694 -8
19. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’16), 2016, Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE,
2016: 770 -778
20. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’17), 2017, Jul 21 - 26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 7263 -7271
21. Bambach S, Lee S, Crandall D J, et al. Lending a hand: detecting hands and recognizing activities in complex egocentric
interactions. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV’15), 2015, Dec 7 - 13, Santiago, Chile. Piscataway, NJ, USA: IEEE, 2015: 1949 - 1957
22. Guo C Z, Kidono K, Meguro J, et al. A low-cost solution for automatic lane-level map generation using conventional in-car
sensors. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2355 -2366
23. Zhang Q H. Adaptive Kalman filter for actuator fault diagnosis. Automatica, 2018, 93: 333 -342
|