1. Ludovic M. Genetic algorithm, a biologically inspired approach for security audit trails analysis. Proceedings of 12th International Conference on Computer Safety, Reliability and Security (SAFECOMP’93), Oct 27-29, 1993, Poznan, Poland. Berlin, Germany: Springer-Verlag, 1993
2. Ryan J, Lin M J. Intrusion detection with neural networks. Advances in Neural Information Processing Systems 10, Cambridge, MA, USA: MIT Press, 1998
3. Batur C, Zhou L, Chan C C. Support vector machines for fault detection. Proceedings of the 41st IEEE Conference on Detection and Control: Vol 2, Dec 10-13, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2002: 1355-1356
4. Tian Xin-guang, Gao Li-zhi, Sun Chun-lai, et al. A method for anomaly detection of user behaviors based on machine learning. The Journal of China Universities of Posts and Telecommuni- cations, 2006,13(2): 61-65
5. Liu Yi-hung, Chen Yen-ting. Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Transactions on Neural Networks, 2007,18(1): 178-192
6. Lin Chun-fu, Wang Sheng-de. Fuzzy support vector machine. IEEE Transactions on Neural Networks, 2002,13(2): 464-471
7. Xiong Sheng-wu, Liu Hong-bing, Niu Xiao-xiao. Fuzzy support vector machines based on FCM clustering. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, Aug 18-21, 2005. Piscataway, NJ, USA: IEEE, 2005: 2608-2613
8. Sung A H, Mukkamala S. Identify important features for intrusion detection using support vector machines and neural networks. Proceedings of 2003 Symposium on Applications and the Internet, Jan 27-31, 2003, Orlando, FL, USA. Piscataway, NJ, USA: IEEE Computer Society, 2003: 209-217
9. Middlemiss M J, Dick G. Weighted feature extraction using a genetic algorithm for intrusion detection. Conqress on Evolutionary Computation: Vol 3, Dec 8-12, Carberra, Australia. Piscataway, NJ, USA: IEEE, 2003: 1669-1675
10. Shon T, Kim Y, Lee C, Moon J, et al. A machine learning framework for network anomaly detection using svm and ga. Proceedings of 6th Annual IEEE Workshop on Information Assurance and Security, Jun 15-17, 2005, West Point, NY, USA. Piscataway, NJ, USAS: IEEE Computer Society, 2005: 176-183
11. Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. Proceedings of 9th IEEE Workshop on Neural Networks for Signal Processing (NNSP’99), Aug 23-25, 1999, Madison, WI, USA. Piscataway, NJ, USA: IEEE, 1999: 41-48
12. Shah H, Undercoffer J, Joshi A. Fuzzy clustering for intrusion detection. Proceedings of IEEE International Conference on Fuzzy Systems: Vol 2, May 25-28, 2003, St Louis, MO, USA. Piscataway, NJ, USA, 2003: 1274-1278
13. Dickerson J E, Juslin J, Koukousoula O, et al. Fuzzy intrusion detection. Proceedings of Joint 9th IFSA Word Congress and 20th North American Fuzzy Information Processing Society International Conference: Vol 3, Jul 25-28, 2001, Vancouver, Canada. Piscataway, NJ, USA: IEEE, 2001: 1506-1510
14. Wang Y X, Wong J, Miner A. Anomaly intrusion detection using one class SVM. Proceedings of the Fifth Annual IEEE System, Man and Cybernetics Information Assurance Workshop, Jun 10-11, 2004, West Point, NY, USA. New York, NY,USA: IEEE, 2004: 358-364
15. Vapnik V N. Statistical learning theory. New York, NY, USA: John Wiley and Sons, 2004
16. Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425
17. Agarwal R, Joshi M V. PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection). TR 00-015, 2000
18. Bouzida Y, Gombault S. Eigenconnections to intrusion detection. Proceedings of 19th IFIP International Information Security Conference, Aug 23-26, 2004, Toulouse, France. 2004: 241-258
19. Venkatachalam V, Selvan S. An approach for reducing the computational complexity of LAMSTAR intrusion detection system using principal component analysis. International Journal of Computer Science, 2007, 2(1): 76-84 |