1. Wu J, Xiong J J, Shil P, et al. Real time anomaly detection in wide area monitoring of smart grids. Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14), Nov 2-6, 2014, San Jose, CA, USA. Piscataway, NJ, USA: IEEE, 2014: 197-204
2. Answar A, Mahmood A N. Anomaly detection in electric network database of smart grid: graph matching approach. Electric Power Systems Research, 2016, 133: 51-62
3. Levorato M, Mitra U. Fast anomaly detection in smart grids via sparse approximation theory. Proceedings of the IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM’16), Jun 17-20, 2016, Hoboken, NJ, USA. Piscataway, NJ, USA: IEEE, 2016: 5-8
4. Ford V, Siraj A, Eberle W. Smart grid energy fraud detection using artificial neural networks. Proceedings of the 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG’14), Dec 9-12, 2014, Orlando, FL, USA. Piscataway, NJ, USA: IEEE, 2014: 6p
5. Laptev N, Amizadeh S, Flint I. Generic and scalable framework for automated time-series anomaly detection. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15), Aug 10-13, 2015, Sydney, Australia. New York, NY, USA: ACM, 2015: 1939-1947
6. Manzoor E A, Milajerdi S M, Akoglu L. Fast memory-efficient anomaly detection in streaming heterogeneous graphs. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), Aug 24-27, 2016, San Francisco, CA, USA. New York, NY, USA: ACM, 2016: 1035-1044
7. Golmohammadi K, Zaiane O R. Time series contextual anomaly detection for detecting market manipulation in stock market. Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA’15), Oct 19-21, 2015, Paris, France. Piscataway, NJ, USA: IEEE, 2015: 10p
8. Hu W, Zhang W L, Min Y, et al. Real-time emergency control decision in power system based on support vector machines. Proceedings of the CSEE, 2017, 37(16): 4567-4576 (in Chinese)
9. Cho K, van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP’14), Oct 25-29, 2014, Doha, Qatar. 2014: 14p
10. Johnson R, Zhang T. Supervised and semi-supervised text categorization using LSTM for region embeddings. Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML’16), Jun 19-24, 2016, New York, NY, USA. New York, NY, USA: ACM, 2016: 526-534
11. Li J W, Luong M T, Jurafsky D. A hierarchical neural autoencoder for paragraphs and documents. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL-IJCNLP’15), Jul 26-31, 2015, Beijing, China. 2015: 1106-1115
12. Yang Y H, Xia Y J, Ge F J, et al. A trend based similarity calculation approach for mining time series data. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS’12): Vol 1, Mar 14-16, 2012, Hong Kong, China. 2012: 4p
13. Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection. Proceedings of the 33rd International Conference on Machine Learning (ICML’16) Workshop on Anomaly Detection, Jun 19-24, 2016, New York, NY, USA. 2016
14. Chen Y P, Keogh E, Hu B, et al. The UCR time series classification archive. Riverside, CA, USA: University of California, Riverside (UCR), 2015
15. Grainger J J, Stevenson W D. Power system analysis. New York, NY, USA: McGraw-Hill, 2003
16. Chauhan S, Vig L. Anomaly detection in ECG time signals via deep long short-term memory networks. Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA’15), Oct 19-21, 2015, Paris, France. Piscataway, NJ, USA: IEEE, 2015: 7p |