1. Yu H, Zou X C, Chen C Y. A super performance bandgap voltage reference with adjustable output for DC-DC converter. The Journal of China Universities of Posts and Telecommunications, 2006, 13 (1): 75-78
2. Magod R, Suda N, Ivanov V, et al. A low-noise output capacitorless low-dropout regulator with a switched-RC bandgap reference. IEEE Transactions on Power Electronics, 2017, 32(4): 2856-2864
3. Shih Y C, Otis B P. An inductorless DC-DC converter for energy harvesting with a 1.2 μW bandgap-referenced output controller. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58 (12): 832-836
4. Zhang H L, Xiao Z B, Tan X, et al. Low-power sub-1-V compact bandgap reference for passive RFID tags. Electronics Letters, 2015, 51 (11): 815-816
5. Widlar R J. New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits, 1971, 6 (1): 2-7
6. Lam Y H, Ki W H. CMOS bandgap references with self-biased symmetrically matched current-voltage mirror and extension of sub-1-V design. IEEE Transactions on Very Large Scale Integration Systems, 2010, 18(6): 857-865
7. Perry R T, Lewis S H, Paul Brokaw A, et al. Viswanathan T R. A 1.4 V supply CMOS fractional bandgap reference. IEEE Journal of Solid-State Circuits, 2007, 42(10): 2180-2186
8. Chen J H, Ni X W, Mo B X. A curvature compensated CMOS bandgap voltage reference for high precision applications. Proceeding of the 7th International Conference on ASIC, Oct 26-29, 2007, Guilin, China. Piscataway, NJ, USA: IEEE, 2007: 510-513
9. Rincon-Mora G, Allen P E. A 1.1-V current mode and piecewise-linear curvature-corrected bandgap reference. IEEE Journal of Solid-State Circuits, 1998, 33(10): 1551-1554
10. Leung K N, Mok P K T, Leung C Y. A 2-V 23-μA 5.3-ppm/?C curvature-compensated CMOS bandgap voltage reference. IEEE Journal of Solid-State Circuits, 2003, 38(3): 561-564
11. Andreou C M, Koudounas S, Georgiou J. A novel wide-temperature-range, 3.9 ppm/?C CMOS bandgap reference circuit. IEEE Journal of Solid-Sate Circuits, 2012, 47(2): 574-581
12. Zhou Z K, Shi Y, Huang Z, et al. A 1.6-V 25-μA 5-ppm/°C curvature-compensated bandgap reference. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59 (4): 677-684
13. Duan Q Z, Roh J J. A 1.2-V 4.2-ppm/?C high-order curvature-compensated CMOS bandgap reference. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62 (3): 662-670
14. Lee K K, Lande T S, Häfliger P D. A sub-µW bandgap reference circuit with an inherent curvature-compensation property. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62 (1): 1-9
15. Ma B, Yu F Q. A novel 1.2-V 4.5-ppm/ºC curvature-compensated CMOS bandgap reference. IEEE Transactions on circuits and systems I: Regular Papers, 2014, 61 (4): 1026-1035
16. Adl A H, El-Sankary K, El-Masry E. Bandgap reference with curvature corrected compensation using subthreshold MOSFETs. Proceeding of the 2009 IEEE International Symposium on Circuits and Systems, May 24-27, 2009, Taipei, China. Piscataway, NJ, USA: IEEE, 2009: 812-815
17. Sangolli S S, Rohini S H. Design of low voltage bandgap reference circuit using subthreshold MOSFET. Proceeding of the 5th Nirma University International Conference on Engineering (NUiCONE’15), Nov 26-28, 2015, Ahmedabad, India. Piscataway, NJ, USA: IEEE, 2015: 6p
18. Li Y L, Wang Y, Yan N, et al. A subthreshold MOSFET bandgap reference with ultra-low power supply voltage. Proceeding of the 9th IEEE International Conference on ASIC, Oct 25-28, 2011, Xiamen, China. Piscataway, NJ, USA: IEEE, 2011: 862-865
19. Giustolisi G, Palumbo G, Criscione M, et al. A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 2003, 38(1): 151-154
20. Huang P H, Lin H C, Lin Y T. A simple subthreshold CMOS voltage reference circuit with channel-length modulation compensation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(9): 882-885
21. Tsividis Y P, Ulmer R W. A CMOS voltage reference. IEEE Journal of Solid-State Circuits, 1978, 13(6): 774-778
22. Vittoz E, Fellrath J. CMOS analog integrated circuits based on weak inversion operation. IEEE Journal of Solid-State Circuits, 1977, 12(3): 224-231 |