1. LI J Q, PEI L, ZOU D P, et al. Attention-SLAM: A visual monocular SLAM learning from human gaze. IEEE Sensors Journal, 2021, 21(5): 6408-6420.
2. CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
3. BRESSON G, ALSAYED Z, YU L, et al. Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2017, 2(3): 194-220.
4. SERVIERES M, RENAUDIN V, DUPUIS A, et al. Visual and visual-inertial SLAM: State of the art, classification, and experimental benchmarking. Journal of Sensors, 2021, Article 2054828.
5. HAN X, TAO Y L, LI Z Y, et al. SuperPointVO: A lightweight visual odometry based on CNN feature extraction. Proceedings of the 5th International Conference on Automation, Control and Robotics Engineering (CACRE’20), 2020, Sept 19-20, Dalian, China. Piscataway, NJ, USA: IEEE, 2020: 685-691.
6. LI D J, SHI X S, LONG Q W, et al. DXSLAM: A robust and efficient visual SLAM system with deep features. Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’20), 2020, Oct 24-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2020: 4958-4965.
7. DENG C Q, QIU K T, XIONG R, et al. Comparative study of deep learning based features in SLAM. Proceedings of the 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS’19), 2019, Jul 13-15, Nagoya, Japan. Piscataway, NJ, USA: IEEE, 2019: 250-254.
8. RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF. Proceedings of the 2011 International Conference on Computer Vision (ICCV’11), 2011, Nov 6-13, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2011: 2564-2571.
9. MUR-ARTAL R, TARDOS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
10. LIU R Z, YANG J L, CHEN Y R, et al. eSLAM: An energy-efficient accelerator for real-time ORB-SLAM on FPGA platform. Proceedings of the 56th Annual Design Automation Conference (DAC’19), 2019, Jun 2-6, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2019: 6p.
11. LEE T J, KIM C H, CHO D D. A monocular vision sensor-based efficient SLAM method for indoor service robots. IEEE Transactions on Industrial Electronics, 2019, 66(1): 318-328.
12. CAMPOS C, ELVIRA R, RODRIGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
13. SUAREZ I, SFEIR G, BUENAPOSADA J M, et al. BEBLID: Boosted efficient binary local image descriptor. Pattern Recognition Letters, 2020, 133: 366-372.
14. CALONDER M, LEPETIT V, STRECHA C, et al. Brief: Binary robust independent elementary features. Computer Vision: Proceedings of the 11th European Conference on Computer Vision (ECCV’10): Part IV, 2010, Sept 5-11, Heraklion, Greece. LNIP 6314. Berlin, Germany: Springer, 2010: 778-792.
15. GALVEZ-LOPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics, 2012, 28(5): 1188-1197.
16. ENDRES F, HESS J, STURM J, et al. 3-D mapping with an RGB-D camera. IEEE Transactions on Robotics, 2014, 30(1): 177-187.
17. NG P C, HENIKOFF S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 2003, 31(13): 3812-3814.
18. SCHENK F, FRAUNDORFER F. RESLAM: A real-time robust edge-based SLAM system. Proceedings of the 2019 International Conference on Robotics and Automation (ICRA’19), 2019, May 20-24, Montreal, Canada. Piscataway, NJ, USA: IEEE, 2019: 154-160.
19. LI K, YAO J, LU X H, et al. Hierarchical line matching based on line-junction-line structure descriptor and local homography estimation. Neurocomputing, 2016, 184: 207-220.
20. BALLESTER I, FONTAN A, CIVERA J, et al. DOT: Dynamic object tracking for visual SLAM. 2021 IEEE International Conference on Robotics and Automation (ICRA), May 30-June 6, 2021, Xi'an, China. Piscataway, NJ, USA: IEEE, 2021:11705-11711.
21. BESCOS B, FACIL J M, CIVERA J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083.
22. YU C, LIU Z X, LIU X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments. Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’18), 2018, Oct 1-5, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2018: 1168-1174.
23. BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
24. BAY H, TUYTELAARS T, GOOL L V. SURF: Speeded up robust features. Computer Vision: Proceedings of the 9th European Conference on Computer Vision (ECCV’06): Part I, 2006, May 7-13, Graz, Austria. LNIP 3951. Berlin, Germany: Springer, 2006: 404-417.
25. ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection. Computer Vision: Proceedings of the 9th European Conference on Computer Vision (ECCV’06): Part I, 2006, May 7-13, Graz, Austria. LNIP 3951. Berlin, Germany: Springer, 2006: 430-443.
26. LI H, YANG H F, CHEN K Y. Feature point extraction and tracking based on a local adaptive threshold. IEEE Access, 2020, 8: 44325-44334.
27. YAO J J, ZHANG P C, WANG Y, et al. An adaptive uniform distribution ORB based on improved quadtree. IEEE Access, 2019, 7: 143471-143478.
28. WANG X, DUAN L, FAN Y, et al. A multi-sensor image matching method based on KAZE-HOG features. Proceedings of the IEEE 4th International Conference on Image, Vision and Computing (ICIVC’19), 2019, Jul 5-7, Xiamen, China. Piscataway, NJ, USA: IEEE, 2019: 514-517.
29. ZHONG B, LI Y B. Image feature point matching based on improved SIFT algorithm. Proceedings of the IEEE 4th International Conference on Image, Vision and Computing (ICIVC’19), 2019, Jul 5-7, Xiamen, China. Piscataway, NJ, USA: IEEE, 2019: 489-493.
30. WANG Z F, LI Z P, CHENG L, et al. An improved ORB feature extraction and matching algorithm based on affine transformation. Proceedings of the 2020 Chinese Automation Congress (CAC’20), 2020, Nov 7-8, Shanghai, China. Piscataway, NJ, USA: IEEE, 2020: 1511-1515
|