1. ZHANG Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 589-597.
2. FAN H, LING H B. SANet: Structure-aware network for visual tracking. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’17), 2017, Jul 21-26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 2217-2224.
3. LI Y H, ZHANG X F, CHEN D M. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018, Jun 18-22, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 1091-1100.
4. ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017, Jul 21-26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 5967-5976.
5. GONZALEZ R C, WOODS R E. Digital image processing. 3rd ed. Harlow, UK: Pearson Education, 2008.
6. WANG J, PEREZ L. The effectiveness of data augmentation in image classification using deep learning. arXiv Preprint, arXiv:1712.04621, 2017.
7. CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
8. INOUE H. Data augmentation by pairing samples for images classification. arXiv Preprint, arXiv:1801.02929, 2018.
9. CUBUK E. D, ZOPH B, MANE D, et al. AutoAugment: Learning augmentation strategies from data. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019, Jun 16-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 113-123.
10. DEVRIES. T, TAYLOR G W. Dataset augmentation in feature space. Proceedings of the 5th International Conference on Learning Representations-Workshop Track (ICLRW’17), 2017, Apr 24-26, Toulon, France. 2017: 12p.
11. MIYATO T, DAI A M, GOODFELLOW I. Adversarial training methods for semi-supervised text classification. Proceedings of the 5th International Conference on Learning Representations (ICLR’17), 2017, Apr 24-26, Toulon, France. 2017: 11p.
12. MUZAHID A A M, WAN W G, SOHEL F. Progressive conditional GAN-based augmentation for 3D object recognition. Neurocomputing, 2021, 460: 20-30.
13. WANG G X, KANG W X, WU Q X, et al. Generative adversarial network (GAN) based data augmentation for palmprint recognition. Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA’18), 2018, Dec 10-13, Canberra, Australia. Piscataway, NJ, USA: IEEE, 2018: 7p.
14. FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 2018, 321: 321-331.
15. MOK T C W, CHUNG A C S. Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Proceedings of the 4th International MICCAI Brainlesion Workshop (MICCAI’18): Part I, 2018, Sept 16-20, Granada, Spain. LNIP 11383. Berlin, Germany: Springer, 2018: 70-80.
16. MORRIS J, LIFLAND E, YOO J Y, et al. TextAttack: A framework for adversarial attacks, data augmentation, and adversarial training in NLP. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (EMNLP’20), 2020, Nov 16-20, Online. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020: 119-126.
17. PENG B L, ZHU C G, ZENG M, et al. Data augmentation for spoken language understanding via pretrained language models. Proceedings of the 22nd Annual Conference of the International Speech Communication Association (INTERSPEECH’21), 2021, Aug 30-Sept 3, Brno, Czech. Baixas, France: International Speech Communication Association, 2021: 1219-1223.
18. GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Advances in Neural Information Processing Systems 27: Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS’14), 2014, Dec 8-13, Montreal, Canada. Cambridge, MA, USA: MIT Press, 2014: 2672-2680.
19. MIRZA M, OSINDERO S. Conditional generative adversarial nets. arXiv Preprint, arXiv:1411.1784, 2014.
20. DAI B, FIDLER S, URTASUN R, et al. Towards diverse and natural image descriptions via a conditional GAN. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV’17), 2017, Oct 22-29, Venice, Italy. Piscataway, NJ, USA: IEEE, 2017: 2989-2998.
21. LI X Y, ZHANG Y Y, ZHANG J Y, et al. Region-based activity recognition using conditional GAN. Proceedings of the 25th ACM International Conference on Multimedia Conference (MM’17), 2017, Oct 23-27, Mountain View, CA, USA. New York, NY, USA: ACM, 2017: 1059-1067.
22. LU Y, TAI T W, TANG C K. Attribute-guided face generation using conditional CycleGAN. Computer Vision: Proceedings of the 15th European Conference on Computer Vision (ECCV’18): Part XII, 2018, Sept 8-14, Munich, Germany. LNIP 11216. Berlin, Germany: Springer, 2018: 293-308.
23. KANTOR P B. Foundations of statistical natural language processing. Information Retrieval, 2001, 4(1): 80-81.
24. JURAFSKY D, MARTIN J. H. Speech and language processing: An introduction to natural language processing. 2nd ed. Prentice Hall series in artificial intelligence. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
25. GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation. Proceedings of the 32nd International Conference on Machine Learning (ICML’15), 2015, Jul 6-11, Lille, France. Stroudsburg, PA, USA: International Machine Learning Society (IMLS), 2015: 1462-1471.
26. MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention. Advances in Neural Information Processing Systems 27: Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS’14), 2014, Dec 8-13, Montreal, Canada. Cambridge, MA, USA: MIT Press, 2014: 2204-2212.
27. BA J, MNIH V, KAVUKCUOGLU K. Multiple object recognition with visual attention. Proceedings of the 3rd International Conference on Learning Representations (ICLR’15), 2015, May 7-9, San Diego, CA, USA. 2015: 10p.
28. HAFIZ A M, PARAH S A, BHAT R U A. Attention mechanisms and deep learning for machine vision: A survey of the state of the art. arXiv Preprint, arXiv:2106.07550, 2021.
29. ZAREMBA W, SUTSKEVER I. Reinforcement learning neural Turing machines. arXiv Preprint, arXiv:1505.00521, 2015.
30. TANG H, XU D, SEBE N, et al. Multi-channel attention selection GAN with cascaded semantic guidance for cross-view image translation. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019, Jun 16-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 2417-2426.
|