1. Ma L B, Hu K Y, Zhu Y L, et al. Cooperative artificial bee colony algorithm for multi-objective RFID network planning. Journal of Network and Computer Applications, 2014, 42: 143-162
2. Lu S L, Yu S Z. A fuzzy k-coverage approach for RFID network planning using plant growth simulation algorithm. Journal of Network and Computer Applications, 2014, 39: 280-291
3. Ma L B, Wang X W, Huang M, et al. Two-level master–slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer. IEEE Transactions on Systems, Man, and Cybernetics, 2019, 49(5): 861-880
4. Guan Q, Liu Y, Yang Y P, et al. Genetic approach for network planning in the RFID systems. Proceedings of the 2006 International Conference on Intelligent Systems Design and Applications: Vol 2, 2006, Oct 16-18, Jinan, China. Piscataway, NJ, USA: IEEE, 2003: 567-572
5. Chen H N, Zhu Y L. RFID networks planning using evolutionary algorithms and swarm intelligence. Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, Oct 12-14, Dalian, China. Piscataway, NJ, USA: IEEE, 2008: 4p
6. Gong Y J, Shen M, Zhang J, et al. Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination. IEEE Transactions on Industrial Informatics, 2012, 8(4): 900-912
7. Bacanin N, Tuba M, Strumberger I. RFID network planning by ABC algorithm hybridized with heuristic for initial number and locations of readers. Proceedings of the 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim’16), 2016, Sept 25-27, Cambridge, UK. Piscataway, NJ, USA: IEEE, 2016: 25-27
8. Tuba M, Bacanin N. Hybridized bat algorithm for multi-objective radio frequency identification (RFID) network planning. Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC’15), 2015, May 25-28, Sendai, Japan. Piscataway, NJ, USA: IEEE, 2015: 499-506
9. Bacanin N, Tuba M, Jovanovic R. Hierarchical multiobjective RFID network planning using firefly algorithm. Proceedings of the 2015 International Conference on Information and Communication Technology Research (ICTRC’15), 2015, May 17-19, Abu Dhabi, United Arab Emirates. Piscataway, NJ, USA: IEEE, 2015: 282-285
10. Jaballah A, Meddeb A. Self adaptive cuckoo search algorithm for RFID network planning. Proceedings of the 2017 Internet Technologies and Applications (ITA’17), 2017, Sept 12-15, Wrexham, UK. Piscataway, NJ, USA: IEEE, 2017: 122-127
11. Tuba M, Bacanin N, Beko M. Fireworks algorithm for RFID network planning problem. Proceedings of the 25th International Conference Radioelektronika (RADIOELEKTRONIKA’15), 2015, Apr 21-22, Pardubice, Czech. Piscataway, NJ, USA: IEEE, 2015: 440-444
12. Yuan C C, Hanning C, Shen J, et al. Indicator-based multi-objective adaptive bacterial foraging algorithm for RFID network planning. Cluster Computing, 2019, 22(5): 12649-12657
13. Zahran E G, Arafa A A, Saleh H I, et al. Biogeography based optimization algorithm for efficient RFID reader deployment. Proceedings of the 13th International Conference on Computer Engineering and Systems (ICCES’18), 2018, Dec 18-19, Cairo, Egypt. Piscataway, NJ, USA: IEEE, 2019: 454-459
14. Mirjalili S, Mirjalili S M, Lewis A. Gray wolf optimizer. Advances in Engineering Software, 2014, 69: 46-61
15. Kohli M, Arora S. Chaotic gray wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 2017, 5(4): 458-472
16. Singh N, Hachimi H. A new hybrid whale optimizer algorithm with mean strategy of gray wolf optimizer for global optimization. Mathematical and Computational Applications, 2018, 23(1): 14-32
17. Elgayyar M, Emary E, Sweilam N H, et al. A hybrid gray wolf-bat algorithm for global optimization. Proceedings of the 2018 International Conference on Advanced Machine Learning Technologies and Applications (AMLTA’18), 2018, Feb 22-24, Cairo, Egypt. Berlin, Germany: Springer, 2018: 3-12
18. Yang X S, Deb S. Cuckoo search via levy flights. Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC’09), 2009, Dec 9-11, Coimbatore, India. Piscataway, NJ, USA: IEEE, 2010: 210-214
19. Boushaki S I,Kamel N,Bendjeghaba O. A new quantum chaotic cuckoo search algorithm for data clustering. Expert Systems with Applications, 2018, 96: 358-372
20. Cheng Z W, Wang J Q, Zhang M X, et al. Improvement and application of adaptive hybrid cuckoo search algorithm. IEEE Access, 2019, 7: 145489-145515
21. Zhou J J, Yao X F. A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition. International Journal of Production Research, 2017, 55(16): 4765-4784
|