1. Bouton M, Tumova J, Kochenderfer M J. Point-based methods for model checking in partially observable Markov decision processes. Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20), 2020, Feb 7 - 12, New York, NY, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2020: 10061 -10068
2. Pilania V, Gupta K K. Mobile manipulator planning under uncertainty in unknown environments. The International Journal of
Robotics Research, 2018, 37(2/3): 316 -339
3. Zhou X, Wang W P, Wang T, et al. Online planning for multiagent situational information gathering in the Markov environment. IEEE Systems Journal, 2020, 14(2): 1798 -1809
4. Winterer L, Junges S, Wimmer R, et al. Strategy synthesis for POMDPs in robot planning via Game-based abstractions. arXiv: 1708. 04236v2, 2019
5. Wu B, Feng Y P. Policy reuse for learning and planning in partially observable Markov decision processes. Proceedings of the
4th International Conference on Information Science and Control Engineering (ICISCE’17). 2017, Jul 21 -23, Changsha, China.
Piscataway, NJ, USA: IEEE, 2017: 549 -552
6. Brooks A, Makarendo A, Williams S, et al. Parametric POMDPs for planning in continuous state spaces. Robotics and Autonomous Systems, 2006, 54(11): 887 -897
7. Kaelbling L P, Littman M L, Cassandra A R. Planning and acting in partially observable stochastic domains. Artificial Intelligence,
1998, 101(1/2): 99 -134
8. Papadimitriou C H, Tsisiklis J N. The complexity of Markov decision processes. Mathematics of Operations Research, 1987,
12(3): 441 -450
9. Porta J M, Vlassis N, Spaan M T J, et al. Point-based value iteration for continuous POMDPs. Journal of Machine Learning
Research, 2006, 7: 2329 -2367
10. Huynh V A, Roy N. IcLQG: combining local and global optimization for control in information space. Proceedings of the
2009 IEEE International Conference on Robotics and Automation, 2009, May 12 -17, Kobe, Japan. Piscataway, NJ, USA: IEEE,
2009: 2851 -2858
11. Todorov E, Li W W. A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic
systems. Proceedings of the 2005 American Control Conference: Vol 1, 2005, Jun 8 - 10, Portland, OR, USA. Piscataway, NJ, USA: IEEE, 2005: 300 -306
12. Li W, Todorov E. Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic systems. International Journal of Control, 2007, 80(9): 1439 -1453
13. van den Berg J, Patil S, Alterovitz R. Efficient approximate value iteration for continuous Gaussian POMDPs. Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), 2012, Jul22 - 26, Toronto, Canada. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 2012: 1832 -1838
14. van den Berg J, Patil S, Alterovitz R. Motion planning under uncertainty using differential dynamic programming in belief space.
Robotics Research: Proceedings of the 15th International Symposium of Robotics Research (ISRR’11), 2011, Dec 9 - 12, Flagstaff, AZ, USA. STAR ( Springer Tracts in Advanced Robotics) 100. Berlin, Germany: Springer, 2017: 473 -490
15. van den Berg J, Patil S, Alterovitz R. Motion planning under uncertainty using iterative local optimization in belief space. The
International Journal of Robotics Research, 2012, 31(11): 1263 -1278
16. Kearns M, Mansour Y, Ng A Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49(2/3): 193 -208
17. Luo Y F, Bai H Y, Hsu D, et al. Importance sampling for online planning under uncertainty. The International Journal of Robotics Research, 2019, 38(2/3): 162 -181
18. Spaan M T J . Partially observable Markov decision processes. Wiering M, van Otterlo M (ed). Reinforcement Learning. ALO
(Adaptation, Learning, and Optimization) 12. Berlin, Germany: Springer, 2012: 387 -414
19. Lavalle S M. Rapidly-exploring random treas: a new tool for motion planning. TR98-11. Ames, IA, USA: Iowa State University,
1998
20. Vitus M P, Tomlin C J. Closed-loop belief space planning for linear, Gaussian systems. Proceedings of the 2011 IEEE International Conference on Robotics and Automation, 2011, May 9 - 13, Shanghai, China. Piscataway, NJ, USA: IEEE, 2011: 2152 -2159
21. Bai H Y, Hsu D, Lee W S, et al. Monte Carlo value iteration for continuous state POMDPs. Algorithmic Foundations of Robotics
IX: Proceedings of the 9th International Workshop on the Algorithmic Foundations of Robotics, 2010, Dec 13 - 15,
Singapore. STAR 68. Berlin, Germany: Springer, 2010: 175 -191
22. van den Berg J, Abbeel P, Goldberg K Y. LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. International Journal of Robotics Research, 2011, 30(7): 895 -913
23. Erez T, Smart W D. A scalable method for solving high- dimensional continuous POMDPs using local approximation.
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI’10), 2010, Jul 8 - 11, Catalina Island, CA,
USA. Arlington, VA, USA: AUAI Press, 2010: 1 -8
24.Liao L Z, Shoemaker C A. Convergence in unconstrained discrete- time differential dynamic programming. IEEE Transactions on
Automatic Control, 1991, 36(6): 692 -706
25. Yakowitz S. Algorithms and computational techniques in differential dynamic programming. Control and Dynamic Systems,
1989, 31(Part 1): 75 -91
|