1.
Ge
X H, Tu S, Mao G Q, et al. 5G ultra-dense cellular networks. IEEE Wireless
Communications, 2016, 23(1): 72-79
2.
Kamel
M, Hamouda W, Youssef A. Ultra-dense networks: a survey. IEEE Communications
Surveys & Tutorials, 2016, 18(4): 2522-2545
3.
An
J P, Yang K, Wu J S, et al. Achieving sustainable ultra-dense heterogeneous
networks for 5G. IEEE Communications Magazine, 2017, 55(12): 84-90
4.
Mobile
edge computing (MEC); framework and reference architecture. ETSI GS MEC 003 V1.1.1. Sophia
Antipolis, Franc: ETSI, 2016
5.
Mach
P, Becvar Z. Mobile edge computing: a survey on architecture and computation
offloading. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656
6.
Wang
X F, Han Y W, Wang C Y, et al. In-edge AI: intelligentizing mobile edge
computing, caching and communication by federated learning. IEEE Network, 2019,
33(5): 156-165
7.
Ren
J K, Yu G D, He Y H, et al. Collaborative cloud and edge computing for latency
minimization. IEEE Trans on Vehicular Technology, 2019, 68(5): 5031-5044
8.
Zhang
H B, Wang R, Liu J J. Mobility management for ultra-dense edge computing: a
reinforcement learning approach. Proceedings of the IEEE 90th Vehicular Technology
Conference (VTC’19-Fall), Sept 22-25, 2019, Honolulu, HI, USA. Piscataway,
NJ, USA: IEEE, 2019: 1-5
9.
Chen
S Y, Zhao T Y, Chen H H. et al. Downlink coordinated multi-point transmission
in ultra-dense networks with mobile edge computing. IEEE Network, 2019, 33(2):
152-159
10. Wang Q, Zhou F H. Fair resource
allocation in an MEC-enabled ultra-dense IoT network with NOMA. Proceedings
of the 2019 IEEE International Conference
on Communications Workshops (ICC Workshops’19), May 20-24, 2019, Shanghai,
China. Piscataway,
NJ, USA: IEEE, 2019: 1-6
11. Seng S M, Li X, Luo C Q, et al. A
D2D-assisted MEC computation offloading in the blockchain-based framework for
UDNs. Proceedings
of the 2019 IEEE International Conference
on Communications (ICC’19), May 20-24, 2019, Shanghai, China.
Piscataway, NJ, USA: IEEE, 2019: 1-6
12. Guo H Z, Zhang J, Liu J J, et al.
Energy-efficient task offloading and transmit power allocation for ultra-dense
edge computing. Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM’18),
Dec 9-13,
2018, Abu Dhabi,
United Arab Emirates. Piscataway, NJ, USA: IEEE, 2018: 1-6
13. Li L J, Zhou H M, Xiong S X, et al.
Compound model of task arrivals and load-aware offloading for vehicular mobile
edge computing networks. IEEE Access, 2019, 7: 26631-26640
14. Guo F X, Zhang H L, Ji H, et al. An
efficient computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing. IEEE/ACM Trans on Networking,
2018, 26(6): 2651-2664
15. Liu C B, Li K L, Liang J, et al.
COOPER-MATCH: job offloading with a cooperative game for guaranteeing strict
deadlines in MEC. IEEE Trans on Mobile Computing, 2019, DOI: 10.1109/TMC.2019.2921713
16. Asheralieva A, Niyato D.
Hierarchical game-theoretic and reinforcement learning framework for
computational offloading in UAV-enabled mobile edge computing networks with
multiple service providers. IEEE Internet of Things Journal, 2019, 6(5):
8753-8769
17. Chen X, Liu Z Y, Chen Y, et al.
Mobile edge computing based task offloading and resource allocation in 5G
ultra-dense networks. IEEE Access, 2019, 7: 184172-184182
18. Xie R C, Tang Q Q, Liang C H, et al.
Dynamic computation offloading in IoT fog systems with imperfect channel-state
information: a POMDP approach. IEEE Internet of Things Journal, 2021, 8(1):
345-356
19. Van Le D, Tham C. Quality of service
aware computation offloading in an ad-hoc mobile cloud. IEEE Trans on Vehicular
Technology, 2018, 67(9): 8890-8904
20. Guo H Z, Liu J J, Qin H L.
Collaborative mobile edge computation offloading for IoT over fiber-wireless
networks. IEEE Network, 2018, 32(1): 66-71
21. Fu F W, van der Schaar M. Learning
to compete for resources in wireless stochastic games. IEEE Trans on Vehicular
Technology, 2009, 58(4): 1904-1919
22. Bao X C, Liang H, Liu Y, et al. A
stochastic game approach for collaborative beamforming in SDN-based energy
harvesting wireless sensor networks. IEEE Internet of Things Journal, 2019,
6(6): 9583-9595
23. Wei Z L, Zhao B K, Su J S, et al.
Dynamic edge computation offloading for internet of things with energy
harvesting: a learning method. IEEE Internet of Things Journal, 2019, 6(3):
4436-4447
24. Wang K L, Tan Y Y, Shao Z Y, et al.
Learning-based task offloading for delay-sensitive applications in dynamic fog
networks. IEEE Trans on Vehicular Technology, 2019, 68(11): 11399-11403
25. Chen L X, Zhou S, Xu J. Computation
peer offloading for energy-constrained mobile edge computing in small-cell
networks. IEEE/ACM Trans on Networking, 2018, 26(4): 1619-1632
26. Zhang H J, Duan Y N, Long K P, et
al. Energy Efficient resource allocation in terahertz downlink NOMA systems.
IEEE Trans on Communications, 2021, 69(2): 1375-1384
27. Zheng J C, Cai Y M, Wu Y, et al.
Dynamic computation offloading for mobile cloud computing: a stochastic
game-theoretic approach. IEEE Trans on Mobile Computing, 2019, 18(4): 771-786
28. Zhang L, Cao B. Stochastic
programming method for offloading in mobile edge computing based internet of
vehicle. Proceedings
of the 2019 IEEE International Conference
on Communications (ICC’19), May 20-24, 2019, Shanghai,
China.
Piscataway, NJ, USA: IEEE, 2019: 1-6
29. Wang B B, Wu Y L, Ray Liu K J. Game
theory for cognitive radio networks: an overview. Computer Networks, 2010,
54(14): 2537-2561
30. Chen X, Jiao L, Li W Z, et al.
Efficient multi-user computation offloading for mobile-edge cloud computing.
IEEE/ACM Trans on Networking, 2016, 24(5): 2795-2808
31. Sun Y X, Zhou S, Xu J. EMM: energy-aware
mobility management for mobile edge computing in ultra-dense networks. IEEE
Journal on Selected Areas in Communications, 2017, 35(11): 2637-2646
32. Huang Y F, Tan T H, Wang N C, et al.
Resource allocation for D2D communications with a novel distributed Q-learning
algorithm in heterogeneous networks. Proceedings of the 2018 International Conference on
Machine Learning and Cybernetics (ICMLC’18): Vol 2, Jul 15-18, 2018, Chengdu,
China. Piscataway,
NJ, USA: IEEE, 2018: 533-537
33. Dab B, Aitsaadi N, Langar R.
Q-learning algorithm for joint computation offloading and resource allocation
in edge cloud. Proceedings
of the 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM’19), Apr 8-12, 2019, Arlington, VA, USA. Piscataway,
NJ, USA: IEEE, 2019: 45-52
34. Hu J L, Wellman M P. Nash Q-learning
for general-sum stochastic games. Journal of Machine Learning Research, 2003,
4: 1039-1069
35. Shams F, Bacci G, Luise M.
Energy-efficient power control for multiple-relay cooperative networks using
Q-learning. IEEE Trans on Wireless Communications, 2015, 14(3): 1567-1580
36. Ke H C, Wang J, Wang H, et al. Joint
optimization of data offloading and resource allocation with renewable energy
aware for IoT devices: a deep reinforcement learning approach. IEEE Access,
2019, 7: 179349-179363
37. Guo K, Yang M C, Zhang Y B, et al.
An efficient dynamic offloading approach based on optimization technique for
mobile edge computing. Proceedings of the 6th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (MobileCloud’18), Mar 26-29,
2018, Bamberg,
Germany. Piscataway,
NJ, USA: IEEE, 2018: 29-36
38. Xiao L, Xie C X, Chen T H, et al. A
mobile offloading game against smart attacks. IEEE Access, 2016, 4: 2281-2291
39. Liu X L, Yu J D, Wang J, et al.
Resource allocation with edge computing in IoT networks via machine learning.
IEEE Internet of Things Journal, 2020, 7(4): 3415-3426
|