1. I Skog, P Handel. In-car positioning and navigation technologies-A survey. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 4-21. 2. Chen L H, Wu H K, Jin M H, et al. Intelligent fusion of Wi-Fi and inertial Sensor-Based positioning systems for indoor pedestrian navigation. Sensors Journal IEEE, 2014, 14(11): 4034-4042. 3. N Pirzada, M Y Nayan, F Subhan, et al. Location fingerprinting technique for WLAN Device-Free indoor localization system. Wireless Personal Communications, 2017, 95(2): 445-455. 4. Xia S, Liu Y, Yuan G, and et al. Indoor fingerprint positioning based on Wi-Fi: An overview. International Journal of Geo-Information, 2017, 6(5): 135-160. 5. A Fascista, G Ciccarese, A Coluccia, et al. Angle of Arrival-Based cooperative positioning for smart vehicles. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2880-2892. 6. Wann C D, Yeh Y J, Hsueh C S. Hybrid TDOA/AOA indoor positioning and tracking using extended kalman filters. IEEE Vehicular Technology Conference, May 7-10, 2006, Melbourne, Australia. 2006: 1058-1062. 7. Caffery J J. A new approach to the geometry of TOA location. Vehicular Technology Conference, Sept 24-28, 2000, Boston, USA. 2000: 1943-1949. 8. Swangmuang N, Krishnamurthy P. Location Fingerprint Analyses Toward Efficient Indoor Positioning. Sixth IEEE International Conference on Pervasive Computing & Communications, Mar 17-21, 2008, Hong Kong, China. 2008: 100-109. 9. Baala O, Zheng Y, Caminada A. The impact of AP placement in WLAN-Based indoor positioning system. IEEE Computer Society, Mar 1-6, 2009, Gosier, Guadeloupe. 2009: 12-17. 10. Zhang L, Ma L, Xu Y, et al. Linear regression algorithm against device diversity for indoor WLAN localization system. IEEE GLOBECOM, Dec 4-8, 2017, Singapore. 2017: 1-6. 11. Hwang C R. Simulated annealing: theory and applications. Acta Applicandae Mathematica, 1988, 12(1): 108-111. 12. Shahvari O, Logendran R. An enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. Computers & Operations Research, 2017, 77(8): 154-176. 13. Hiassat A, Diabat A, Rahwan I. A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems, 2017, 42(7): 93-103. 14. Romoozi M, Ebrahimpour-Komleh H. A positioning method in wireless sensor networks using genetic algorithms. Physics Procedia, 2012, 33(4): 1042-1049. 15. Lee C Y, Kang H G. Cell planning with capacity expansion in mobile communications: a tabu search approach. IEEE Transactions on Vehicular Technology, 2000, 49(5): 1678-1691. 16. Amaldi E, Capone A, Malucelli F. Improved models and algorithms for UMTS radio planning. Vehicular Technology Conference, Oct 7-11, 2001, NJ, USA. 2001: 920-924. 17. Chang W C, Ko C H, Lee Y H, et al. A novel prediction system for wireless LAN based on the genetic algorithm and neural network. Proceedings 24th Conference on Local Computer Networks, Oct 18-20, 1999, Lowell, USA. 1999: 258-259. 18. K Maksuriwong, V Varavithya, and N Chaiyaratana. Wireless LAN access point placement using a multi-objective genetic algorithm. IEEE International Conference on Systems, Man and Cybernetics, Oct 8-8, 2003, Washington, USA. 2003: 1944-1949. 19. Sarkar T K, Wicks M C, Salazar-Palma M, et al. Methods for optimizing the location of base stations for indoor wireless communication. Smart Antennas. John Wiley & Sons, Inc, 2005, 50(10): 1481-1483. 20. Fang S H, Lin T N. A novel access point placement approach for WLAN-Based location systems. Smart Antennas. 2010 IEEE Wireless Communication and Networking Conference, April 18-21, 2010, Sydney, Australia. 2010: 1-4. 21. Zhao Y, Zhou H. and Li M. Indoor access points location optimization using differential evolution. International Conference on Computer Science and Software Engineering(CSSE), Dec 12-14, 2008, Hubei, China. 2008: 382–385. 22. Wu G, Mallipeddi R, Suganthan P N, et al. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences, 2016, 329(16): 329-345. 23. D. Stamatelos and A. Ephremides. Spectral efficiency and optimal base placement for indoor wireless networks. IEEE Journal on Selected Areas in Communications, 1996, 14(4): 651–661. 24. Van d D P, Zou X. Global attractivity in delayed hopfield neural network models. Siam Journal on Applied Mathematics, 1998, 58(6): 1878-1890. 25. Sieskul B T, Kaiser T, Zheng F. A hybrid SS-ToA wireless NLoS geolocation based on path attenuation: Cramer-Rao Bound. Vehicular Technology Conference, April 26-29, 2009, Barcelona, Spain. 2009: 1-5. 26. Ling C, X U Xiao-Long, Yang Q. Wireless signal strength propagation model base on cubic spline interpolation. Journal of Zhejiang University, 2011, 45(9): 1521-1520(in Chinese). 27. S Phaiboon. An empirically based path loss model for indoor wireless channels in laboratory building. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Oct 28-31, 2002, Beijing, China. 2002: 1020-1023. 28. Xu B, Xu S Z, Wang Q, et al. Attenuation model of antenna signal with barriers in wireless sensor network. Applied Mechanics & Materials, 2013, 380-384: 3908-3911. 29. Kim E, Kim K. Distance estimation with weighted least squares for mobile Beacon-Based localization in wireless sensor networks. IEEE Signal Processing Letters, 2010, 17(6): 559-562. 30. Tian Z , Tang X , Zhou M , et al. Probability Distribution-Aided indoor positioning algorithm based on affinity propagation clustering. Lecture Notes in Electrical Engineering, 2014, 246(3): 911-919. 31. Tran Q, Tantra J W, Foh C H, et al. Wireless indoor positioning system with enhanced nearest neighbors in signal space algorithm. Vehicular Technology Conference, Sept 25-28, 2006, Montreal, Canada. 2006: 1-5. 32. Wang B, Zhao Y, Zhang T, et al. An improved integrated fingerprint location algorithm based on WKNN. Control and Decision Conference, May 28-30, 2017, Chongqing, China. 2017: 4580-4584. |