References
1. Zhang W, Liu H T. Study of saliency in objective video quality assessment. IEEE Transactions on Image Processing, 2017, 26(3): 1275 -1288
2. Manasa K, Sumohana S C. An optical flow-based full reference video quality assessment algorithm. IEEE Transactions on Image Processing, 2016, 25(6): 2480 -2492
3. Li X L, Guo Q, et al. Spatiotemporal statistics for video quality assessment. IEEE Transactions on Image Processing, 2016, 25(7): 3329 -3342
4. Zhao T S, Liu Q, Chen C W. QoE in video transmission: a user experience-driven strategy. IEEE Communication Surveys and Tutorials, 2016, 19(1): 285 -302
5. Jacob S, Soren F, Jari K. No reference video quality assessment using codec analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(10): 1637 -1650
6. Hu S D, Jin L N, et al. Objective video quality assessment based on perceptually weighted mean squared error. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27 (9): 1844 -1855
7. Ali A N, Sang-Heon L, Javaan C. Quality index evaluation of videos based on fuzzy interface system. IET Image Processing, 2017, 11(5): 292 -300
8. Felix M M, Ke W, Zhang F, Roland B, David R B. On the optimal presentation duration for subjective video quality assessment. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(11): 1977 -1987
9. Ruairi D F. Source separation approach to video quality prediction in computer networks. IEEE Communications Letters, 2016, 20(7): 1333 -1336
10. Chen Y J, Wu K S, Zhang Q. From QoS to QoE: a tutorial on video quality assessment. IEEE Communications Surveys and Tutorials, 2015, 17(2): 1126 -1165
11. Jenni R, Mikko N, et al. Did you notice it? -How can we predict the subjective detection of video quality changes from eye movements. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(1): 37 -47
12. Qian L, Cheng Z X, et al. A QoE-driven encoder adaptation scheme for multi-user video streaming in wireless networks. IEEE Transactions on Broadcast, 2017, 63(1): 20 -31
13. Deepti G, Janice P, Alan C B. Learning a continuous-time streaming video QoE model. IEEE Transactions on Image Processing, 2018, 27(5): 2257 -2271
14. James N, Pablo S G, Jose M A C, et al. 5G-QoE: QoE modelling for Ultra-HD video streaming in 5G networks. IEEE Transactions on Broadcasting, 2018, 64(2): 621 -634
15. Christos G B, Li Z, Ioannis K, et al. Recurrent and dynamic models for predicting streaming video quality of experience. IEEE Transactions on Image Processing, 2018, 27(7): 3316 -3331
16. Mirghiasaldin S, Colin B, Peng X H. Model and performance of a no-reference quality assessment metric for video streaming. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(12): 2034 -2043
17. Zhang F, David R B. A perception-based hybrid model for video quality assessment. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(6): 1017 -1028
18. Maria T V, Decebal C M, Jeroen F, et al. Deep learning for quality assessment in live video streaming. IEEE Signal Processing Letters, 2017, 24(6): 736 -740
19. Zhu K F, Li C Q, Asari V, Saupe D. No-reference video quality assessment based on artifact measurement and statistical analysis. IEEE Transactions on Circuits and System for Video Technology, 2015, 25(4): 533 -546
20. Dem佼stenes Z R, Renata L R, Eduardo A C, Julia A, Graca B. Video quality assessment in video streaming services considering user preference for video content. IEEE Transactions on Consumer Electronics, 2014, 60(3): 436 -444
21. Ortiz-Jaramillo B, Nino-Castaneda J, Platisa L, Philips W. Content-aware objective video quality assessment. Journal of Electronic Imaging, 2016, 25(1): 013011 1 -16
22. Ricky K P M, Edmond W W C, Rocky K C C. Measuring the quality of experience of HTTP video streaming. 2011 12th IFIP/ IEEE International Symposium on Integrated Network Management and Workshops, May 23 -27, 2011, Dublin, Ireland, 2011: 485 -492
23. Taichi K, Kazuhisa Y, Keishiro W, et al. No reference video quality assessment model for video streaming services. 2010 18th International Packet Video Workshop, Dec 13 -14, 2010, HongKong, China, 2010: 158 -164
24. Zheng X, Yang B, Liu Y W, et al. Blockiness evaluation for reducing blocking artifacts in compressed images. 2009 Digest of Technical Papers International Conference on Consumer Electronics, Jan 10 -14, 2009, Las Vegas, NV, USA, 2009: 1 -2
25. Edson F D O, Maria E D L T, et al. Voltage THD analysis using knowledge discovery in databases with a decision tree classifier. IEEE Access, 2018(6): 1177 -1188
26. Mohammed A, Emad D, et al. Prediction of perceptual quality for mobile video using fuzzy inference systems. IEEE Transactions on Consumer Electronics, 2015, 61(4): 546 -554
27. Abdul H, Dai R, Benjamin B. A decision-tree-based perceptual video quality prediction model and its application in FEC for wireless multimedia communications, 2016, 18(4): 764 -774 |