References
1. Sharma R, Chopra V. A review on different image dehazing methods. International Journal of Computer Engineering and Applications, 2014, 6(3): 77 -87
2. Xu Y, Wen J, Fei L, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access, 2016(4): 165 -188
3. Gonzalez R C, Woods R E. Digital image processing. Prentice Hall International, 2005, 28(4): 484 -486
4. Ketcham D J, Lowe R W, Weber J W. Image enhancement techniques for cockpit displays. Burbank, California, USA: Hughes Aircraft Company, 1974.
5. Hummel R. Image enhancement by histogram transformation. Computer Graphics and Image Processing, 1977, 6(2): 184 -195
6. Zuiderveld K. Contrast limited adaptive histogram equalization. Graphics Gems IV. Academic Press Professional, Inc, 1994: 474 -485
7. Reza A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35 -44
8. Mohan S, Ravishankar M. Optimized histogram based contrast limited enhancement for mammogram images. Association of Computer Electronics and Electrical Engineers ( ACEEE ) International Journal on Information Technology, 2013, 3 (1): 66 -71
9. Wu S, Zhu Q, Yang Y, et al. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology. IEEE International Conference on Information and Automation. Jul 28 - 30, 2014, Inner Mongolia, China. Piscataway, NJ, USA: IEEE, 2014: 716948
10. Abbas Q, Celebi M E, Garca I F. Breast mass segmentation using region-based and edge-based methods in a 4-stage multiscale system. Biomedical Signal Processing and Control, 2013, 8(2): 204 -214
11. Bhat M, Patil T. Adaptive clip limit for contrast limited adaptive histogram equalization ( CLAHE) of medical images using least mean square algorithm. International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), May 8 - 10, 2014, Ramanathapuram, India. Piscataway, NJ, USA: IEEE, 2014: 1259 -1263
12. Cands E J, Donoho D L. Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Astronomy and Astrophysics, 2000, 283(3): 1051 -1057
13. Cands E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics, 2004, 57(2): 219 -266
14. Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2006, 5 (3): 861 -899
15. De V F P P. Automatic, adaptive, brightness independent contrast enhancement. Signal Processing, 1990, 21(2): 169 -182
16. Starck J L, Murtagh F, Cands E J, et al. Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing, 2003, 12(6): 706 -717
17. Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image. IEEE 12th International Conference on Computer Vision, Sept 29 - Oct 2, 2009, Kyoto, Japan. Piscataway, NJ, USA: IEEE, 2009: 2201 -2208
18. He K, Sun J, Tang X. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397 -1409
19. Petro A B, Sbert C, Morel J M. Multiscale retinex. Image Processing on Line, 2014: 71 -88
20. Economopoulos T L, Asvestas P A, Matsopoulos G K. Contrast enhancement of images using partitioned iterated function systems. Image and Vision Computing, 2010, 28(1): 45 -54
21. Hautire N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology, 2011, 27(2): 87 -95 |