1. Hassaballah M, Aly S. Face recognition: Challenges, achievements and future directions. IET Computer Vision, 2015, 9(4): 614-626
2. Ghiass R S, Arandjelovi? O,
Bendada A, et al. Infrared face recognition: a comprehensive review of methodologies and databases. Patern Recognition, 2014, 47(9): 2807-2824
3. Xu L, Ren J S J, Liu C, et al. Deep convolutional neural network for image deconvolution. Proceedings of the 28th Annual International Conference on Neural Information Processing Systems (NIPS’14), Dec 8-13, 2014, Montreal, Canada. La Jolla, CA, USA: Neural Information Processing Systems Foundation, Inc, 2014: 1790-1798
4. Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041
5. LeCun Y,
Denker B J S,
Henderson D, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541-551
6. Chen D P, Mak B K W. Multitask learning of deep neural networks for low-resource speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(7): 1172-1183
7. Pan S L, Wang Y W, Liu C S, et al. A discriminative cascade CNN model for offline handwritten digit recognition. Proceedings of the 14th IAPR International Conference on Machine Vision Applications (MVA’15), May 18-22, 2015, Tokyo, Japan. Piscataway NJ, USA: IEEE, 2015: 501-504
8. Ren J F, Jiang X D, Yuan J S. Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Transactions on Image Processing, 2013, 22(10): 4049-4060
9. Xiao Y, Wu J X, Yuan J S. MCENTRIST: A multi-channel feature generation mechanism for scene categorization. IEEE Transactions on Image Processing, 2014, 23(2): 823-836
10. Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifier. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (CLT’92), Jul 27-29, 1992, Pittsburgh, PA, USA. New York, NY, USA: ACM, 1992: 144-152
11. Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 2004, 17(1): 113-126
12. Raj S, Ray K C. ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Transactions on Instrumentation and Measurement, 2017, 66(3): 470-478
13. Rakshit P, Konar A, Nagar A K. Learning automata induced artificial bee colony for noisy optimization. Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC’17), Jun 5-8, 2017, San Sebastián, Spain. Piscataway NJ, USA: IEEE, 2017: 984-991
14. Brunelli R, Poggio T. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
15. Liu Y H, Chen Y T. Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Transactions on Neural Networks, 2007, 18(1): 178-192
16. Heisele B, Ho P, Wu J, et al. Face recognition: component-based versus global approaches. Computer Vision and Image Understanding, 2003, 91(1): 6-21
17. Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324
18. Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662
19. Gupta G, Rathee N. Performance comparison of support vector regression and relevance vector regression for facial expression recognition. Proceedings of the 2015 Annual International Conference on Soft Computing Techniques and Implementations (SCTI’15), Oct 8-10, 2015, Faridabad, India. Piscataway, NJ, USA: IEEE, 2015: 6p
20. Jiang M Y, Yuan D F. Artificial bee colony algorithm and its applications. Beijing, China: Science Press, 2014 (in Chinese)
21. Yang D L, Liu Y L, Li S B, et al. Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm. Mechanism and Machine Theory 90, 2015 : 219-229
22. Üstün B, Melssen W J, Oudenhuijzen M, et al. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 2005, 544(1): 292-305