1. Iglesias F, Negri P, Buemi M E, et al. Facial expression recognition: A comparison between static and dynamic approaches. Proceedings of the International Conference on Pattern Recognition Systems (ICPRS'16), Apr 20-22, 2016, Talca, Chile. Piscataway, NJ, USA: IEEE, 2016: 6p
2. Tarannum T, Paul A, Talukder K H. Human expression recognition based on facial features. Proceedings of the 5th International Conference on Informatics, Electronics and Vision (ICIEV'16), May 13-14, 2016, Dhaka, Bangladesh. Piscataway, NJ, USA: IEEE, 2016: 990-994
3. Neeru N, Kaur L. Face recognition based on LBP and CS-LBP technique under different emotions. Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC'15), Dec 10-12, 2015, Madurai, India. Piscataway, NJ, USA: IEEE, 2016: 4p
4. Ding Y Y, Zhao Q, Li B Q, et al. Facial expression recognition from image sequence based on LBP and Taylor expansion. IEEE Access, 2017, 5: 19409-19419
5. Jabid T, Kabir M H, Chae O. Robust facial expression recognition based on local directional pattern. ETRI Journal, 2010, 32(5): 784-794
6. Rivera A R, Castillo J R, Chae O. Local directional texture pattern image descriptor. Pattern Recognition Letters, 2015, 5(1): 94-100
7. Srinivasa P R, Chandra Mouli P V S S R. Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Systems with Applications, 2016, 63: 66-73
8. Ryu B, Rivera A R, Kim J, et al. Local directional ternary pattern for facial expression recognition. IEEE Transactions on Image Processing, 2017, 26(12): 6006-6018
9. Ithaya Rani P, Muneeswaran K. Recognize the facial emotion in video sequences using eye and mouth temporal Gabor features. Multimedia Tools and Applications, 2017, 76(7): 10017-10040
10. Luo Y, Zhang T, Zhang Y. A novel fusion method of PCA and LDP for facial expression feature extraction. Optik: International Journal for Light and Electron Optics, 2016, 127(2): 718-721
11. Nouyed I, Poon B, Ashraful Amin M. A study on the discriminating characteristics of Gabor phase-face and an improved method for face recognition. International Journal of Machine Learning and Cybernetics, 2016, 7(6): 1115-1130
12. Al-Sumaidaee S A M, Dlay S S, Woo W L, et al. Facial expression recognition using local Gabor gradient code-horizontal diagonal descriptor. Proceedings of the 2nd IET International Conference on Intelligent Signal Processing, Dec 1-2, 2015, London, UK. Piscataway, NJ, USA: IEEE, 2015: 6p
13. Chen J K, Chi Z R, Fu H. Facial expression recognition with dynamic Gabor volume feature. Proceedings of the 18th IEEE International Workshop on Multimedia Signal Processing (MMSP'16), Sept 21-23, 2016, Montreal, Canada. Piscataway, NJ, USA: IEEE, 2016: 5p
14. Liu Y, Bi J W, Fan Z P. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Information Sciences, 2017, 394/395: 38-52
15. Luo Y, Wu C M, Zhang Y. Facial expression recognition based on fusion feature of PCA and LBP with SVM. Optik: International Journal for Light and Electron Optics, 2013, 124(17): 2767-2770
16. Kanade T, Cohn J F, Tian Y L. Comprehensive database for facial expression analysis. Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, Mar 28-30, 2000, Grenoble, France. Piscataway, NJ, USA: IEEE, 2000: 46-53
17. Kamarol S K A, Jaward M H, Parkkinen J, et al. Spatiotemporal feature extraction for facial expression recognition. IET Image Processing, 2016, 10(7): 534-541
18. Kumar S, Bhuyan M K, Chakraborty B K. Extraction of informative regions of a face for facial expression recognition. IET Computer Vision, 2016, 10( 6): 567-576
19. Zhou A L, Wang H. Person-independent facial expression analysis by fusing multiscale cell features. Optical Engineering, 2013, 53(3): 254-260
20. Liu M Y, Shan S G, Wang R P, et al. Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), Jun 23-28, 2014, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 1749-1756 |