1. Wang W, Guan X, Zhang X. Processing of massive audit data streams for real-time anomaly intrusion detection. Computer Communications, 2008, 31(1): 58-72
2. Tian X G, Duan M Y, Cheng X Q. Masquerade detection based on shell commands and multiple behavior pattern mining. Chinese Journal of Computers, 2010, 33(4): 697-705 (in Chinese)
4. Oka M, Oyama Y, Abe H, et al. Anomaly detection using layered networks based on eigen co-occurrence matrix. Proceedings of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID’04), Sep 15-17, 2004, French Riviera, France. LNCS 3224. Berlin, Germany: Springer- Verlag, 2004: 223-237
5. Lane T. Machine learning techniques for the computer security domain of anomaly detection.Doctoral Dissertation. West Lafayette, IN, USA: Purdue University, 2000
6. Lane T, Brodley C E. An empirical study of two approaches to sequence learning for anomaly detection. Machine Learning, 2003, 51(1): 73-107
7. Szymanski B K, Zhang Y Q. Recursive data mining for masquerade detection and author identification. Proceedings of the 5th IEEE System, Man and Cybernetics Information Assurance Workshop (SMC’05), Jun 10-11, 2005, West Point, NY, USA. Los Alamitos, CA, USA: IEEE Computer Society, 2004: 424-431
8. Tian X G, Duan M Y, Li W F, et al. Anomaly detection of user behavior based on shell commands and homogeneous Markov chains. Chinese Journal of Electronics, 2008, 17(2): 231-236
9. Schonlau M, DuMouchel W, Ju W H, et al. Computer intrusion: detecting masquerades. Statistical Science, 2001, 16(1): 58-74
10. Sun H W, Tian X G, Li X C, et al. An improved anomaly detection model for IDS. Chinese Journal of Computers, 2003, 26(11): 1450-1455 (in Chinese)
11. Tian X G, Gao L Z, Sun C L, et al. A method for anomaly detection of user behaviors based on machine learning. The Journal of China Universities of Posts and Telecommunications, 2006, 13(2): 61-65, 78
12. Maxion R A, Townsend T N. Masquerade detection using truncated command lines. Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’02), Jun 23-26, 2002, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2002: 219-228
13. Wang K, Stolfo S J. One class training for masquerade detection. Proceedings of the3rd IEEE Conference Data Mining Workshop on Data Mining for Computer Security (DMSEC’ 03),Nov 19-22, Melbourne, FL,USA. Piscataway, NJ, USA: IEEE, 2003: 10p
14. Wang W, Guan X, Zhang X. Profiling program and user behaviors for anomaly intrusion detection based on non-negative matrix factorization. Proceedings of the 43rd IEEE Conference on Decision and Control (CDC’04), Dec 14-17, 2004, Atlantis, Paradise Island, Bahamas. Los Alamitos: IEEE Computer Society, 2004: 99-104
15. Wan M D, Wu H C, Kuo Y W, et al. Detecting masqueraders using high frequency commands as signatures. Proceedings of the 22nd International Conference on Advanced Information Networking and Applications- Workshops (AINAW’08), Mar 25-28, 2008, Okinawa, Japan. Piscataway, NJ, USA: IEEE, 2008: 596-601
16. Dash S, Reddy K, Pujari A. Episode based masquerade detection. Proceedings of the 1st International Conference on Information Systems Security (ICISS’05), Dec 19-21, 2005,Calcutta, India. LNCS 3803. Berlin, Germany: Springer-Verlag, 2005: 251-262
17. Coull S E, Branch J W, Szymanski B K, et al. Sequence alignment for masquerade detection. Computational Statistics and Data Analysis, 2008, 52(8): 4116-4131
18. Karlin S, Taylor H M. A first course in stochastic processes. 2nd ed.New York, NY, USA: Academic Press, 1975 |