1. SONG Y X, YU F R, ZHOU L, et al. Applications of the Internet of things (IoT) in smart logistics: A comprehensive survey. IEEE Internet of Things Journal, 2021, 8(6): 4250-4274.
2. VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117-1174.
3. ZHANG Z M, XU X L, XIAO F. 5GMEC-DP: Differentially private protection of trajectory data based on 5G-based mobile edge computing. Computer Networks, 2022, 218: Article 109376.
4. OKEGBILE S D, CAI J, ALFA A S. Performance analysis of blockchain-enabled data-sharing scheme in cloud-edge computing-based IoT networks. IEEE Internet of Things Journal, 2022, 9(21): 21520-21536.
5. ROCHER L, HENDRICKX J M, DE MONTJOYE Y A. Estimating the success of re-identifications in incomplete datasets using generative models. Nature Communications, 2019, 10(1): Article 3069.
6. KENNY C T, KURIWAKI S, MCCARTAN C, et al. The use of differential privacy for census data and its impact on redistricting: the case of the 2020 U.S. census. Science Advances, 2021, 7(41): DOI: 10.1126/sciadv.abk3283.
7. LI Z T, WANG T H, LOPUHAÄ-ZWAKENBERG M, et al. Estimating numerical distributions under local differential privacy. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD’20), 2020, Jun 14-19, Portland, OR, USA. New York, NY, USA: ACM, 2020: 621-635.
8. WANG H, HONG H B, XIONG L, et al. L-SRR: Local differential privacy for location-based services with staircase randomized response. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS’22), 2022, Nov 7-11, Los Angeles, CA, USA. New York, NY, USA: ACM, 2022: 2809-2823.
9. ERROUNDA F Z, LIU Y. Collective location statistics release with local differential privacy. Future Generation Computer Systems, 2021, 124: 174-186.
10. ARCOLEZI H H, COUCHOT J F, CERNA S, et al. Forecasting the number of firefighter interventions per region with local-differential-privacy-based data. Computers & Security, 2020, 96: Article 101888.
11. BI M N, WANG Y J, CAI Z P, et al. A privacy-preserving mechanism based on local differential privacy in edge computing. China Communications, 2020, 17(9): 50-65.
12. WANG N, XIAO X K, YANG Y, et al. Collecting and analyzing multidimensional data with local differential privacy. Proceedings of the IEEE 35th International Conference on Data Engineering (ICDE’19), 2019, Apr 8-11, Macao, China. Piscataway, NJ, USA: IEEE, 2019: 638-649.
13. QIU S Y, PI D C, WANG Y X, et al. Novel trajectory privacy protection method against prediction attacks. Expert Systems with Applications, 2023, 213(Part A): Article 118870.
14. XIONG X X, LIU S B, LI D, et al. Real-time and private spatio-temporal data aggregation with local differential privacy. Journal of Information Security and Applications, 2020, 55: Article 102633.
15. YANG Z G, WANG R Y, WU D P, et al. Local trajectory privacy protection in 5G enabled industrial intelligent logistics. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2868-2876.
16. ERLINGSSON Ú, PIHUR V, KOROLOVA A. RAPPOR: Randomized aggregatable privacy-preserving ordinal response. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS’14), 2014, Nov 3-7, Scottsdale, AZ, USA. New York, NY, USA: ACM, 2014: 1054-1067.
17. YUAN S L, PI D C, ZHAO X D, et al. Differential privacy trajectory data protection scheme based on R-tree. Expert Systems with Applications, 2021, 182: Article 115215.
18. YUAN J, ZHENG Y, ZHANG C Y, et al. T-drive: driving directions based on taxi trajectories. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’10), 2010, Nov 2-5, San Jose, CA, USA. New York, NY, USA: ACM, 2010: 99-108.
|