[1] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2): 186 - 195.
[2] BARRIAC G, MADHOW U. Space-time communication for OFDM with implicit channel feedback. IEEE Transactions on Information Theory, 2004, 50(12): 3111 - 3129.
[3] RAO X B, LAU V K N. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 2014, 62(12): 3261 - 3271.
[4] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proceedings of the 31st AAAI Conference on Artificial Intelligence ( AAAI’17), 2017, Feb 4 - 9, San Francisco, CA, USA. Palo Alto, CA, USA: AAAI, 2017: 4278 - 4284.
[5] WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 2018, 7(5): 748 - 751.
[6] LIU Z Y, ZHANG L, DING Z. Exploiting bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback. IEEE Wireless Communications Letters, 2019, 8 ( 3 ): 889 - 892.
[7] YANG Y W, GAO F F, LI G Y, et al. Deep learning-based downlink channel prediction for FDD massive MIMO system. IEEE Communications Letters, 2019, 23(11): 1994 - 1998.
[8] WANG T Q, WEN C K, JIN S, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels. IEEE Wireless Communications Letters, 2019, 8(2): 416 - 419.
[9] CAI Q Y, DONG C, NIU K. Attention model for massive MIMO CSI compression feedback and recovery. Proceedings of the 2019 IEEE Wireless Communications and Networking Conference ( WCNC’19 ), 2019, Apr 15 - 18, Marrakesh, Morocco. Piscataway, NJ, USA: IEEE, 2019: 1 - 5.
[10] GUO J J, WEN C K, JIN S, et al. Convolutional neural network- based multiple-rate compressive sensing for massive MIMO CSI feedback: design, simulation, and analysis. IEEE Transactions on Wireless Communications, 2020, 19(4): 2827 - 2840.
[11] LU C, XU W, JIN S, et al. Bit-level optimized neural network for multi-antenna channel quantization. IEEE Wireless Communications Letters, 2020, 9(1): 87 - 90.
[12] LU Z L, WANG J T, SONG J. Binary neural network aided CSI feedback in massive MIMO system. IEEE Wireless Communications Letters, 2021, 10(6): 1305 - 1308.
[13] YE H Y, GAO F F, QIAN J, et al. Deep learning based denoise network for CSI feedback in FDD massive MIMO systems. IEEE Communications Letters, 2020, 24(8): 1742 - 1746.
[14] LU Z L, WANG J T, SONG J. Multi-resolution CSI feedback with deep learning in massive MIMO system. Proceedings of the 2020 IEEE International Conference on Communications ( ICC’20 ), 2020, Jun 7 - 11, Dublin, Ireland. Piscataway, NJ, USA: IEEE, 2020: 1 - 6.
[15] YU X T, LI X Y, WU H M, et al. DS-NLCsiNet: exploiting non- local neural networks for massive MIMO CSI feedback. IEEE Communications Letters, 2020, 24(12): 2790 - 2794.
[16] WANG J, GUI G, OHTSUKI T, et al. Compressive sampled CSI feedback method based on deep learning for FDD massive MIMO systems. IEEE Transactions on Communications, 2021, 69 ( 9 ): 5873 - 5885.
[17] JI S J, LI M. CLNet: complex input lightweight neural network designed for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 2021, 10(10): 2318 - 2322.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems December ( NIPS’17 ), 2017, Dec 4 - 9, Long Beach, CA, USA. Red Hook, NY, USA: Curran Associates Inc, 2017: 6000 - 6010.
[19] XU Y, YUAN M Q, PUN M O. Transformer empowered CSI feedback for massive MIMO systems. Proceedings of the 30th Wireless and Optical Communications Conference ( WOCC’21 ), 2021, Oct 7 - 8, Taipei, China. Piscataway, NJ, USA: IEEE, 2021: 157 - 161.
[20] CUI Y D, GUO A H, SONG C L. TransNet: full attention network for CSI feedback in FDD massive MIMO system. IEEE Wireless Communications Letters, 2022, 11(5): 903 - 907.
[21] CUI J K, HU Q T, TAN F, et al. IALNet: an integration attention lightweight neural network for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 2023. DOI: 10. 1109 / LWC. 2023. 3249739.
[22] LIU L F, OESTGES C, POUTANEN J, et al. The COST 2100 MIMO channel model. IEEE Wireless Communications, 2012, 19(6): 92 - 99.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR’18), 2018, Jun 18 - 23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7132 - 7141.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision ( ECCV’18 ): Part V Ⅱ, 2018, Sep 8 - 14, Munich, Germany. LNIP 11211. Berlin, Germany: Springer, 2018: 3 - 19.
[25] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design. Proceedings of the 2021 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR’21 ), 2021, Jun 20 - 25, Nashville, TN, USA. Piscataway, NJ, USA: IEEE, 2021: 13708 - 13717.
|