[1] ZHU S Q, YU T, XU T, et al. Intelligent computing: the latest advances, challenges, and future. Intelligent Computing, 2023, 2: Article 0006.
[2] SAHEBI A, BARBONE M, PROCACCINI M, et al. Distributed large-scale graph processing on FPGAs. Journal of Big Data, 2023, 10(1): Article 95.
[3] DADU V, LIU S H, NOWATZKI T. PolyGraph: exposing the value of flexibility for graph processing accelerators. Proceedings of the ACM / IEEE 48th Annual International Symposium on Computer Architecture ( ISCA’21 ), 2021, Jun 14 - 18, Valencia, Spain. Piscataway, NJ, USA: IEEE, 2021: 595 - 608.
[4] WANG P Y, LI C, WANG J, et al. Skywalker: efficient alias- method-based graph sampling and random walk on GPUs. Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques ( PACT’21 ), 2021, Sep 26 - 29, Atlanta, GA, USA. Piscataway, NJ, USA: IEEE, 2021: 304 - 317.
[5] GUI C Y, ZHENG L, HE B S, et al. A survey on graph processing accelerators: challenges and opportunities. Journal of Computer Science and Technology, 2019, 34: 339 - 371.
[6] HE L, LIU C, WANG Y, et al. GCiM: a near-data processing accelerator for graph construction. Proceedings of the 58th ACM / IEEE Design Automation Conference ( DAC’21 ), 2021, Dec 5 - 9, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2021: 205 - 210.
[7 ] BRAHMAKSHATRIYA A, ZHANG Y M, HONG C W, et al. Compiling graph applications for GPUs with GraphIt. Proceedings of the 2021 IEEE / ACM International Symposium on Code Generation and Optimization ( CGO’21 ), 2021, Feb 27 - Mar 3, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2021: 248 - 261.
[8] JUN S W, WRIGHT A, ZHANG S Z, et al. GraFBoost: using accelerated flash storage for external graph analytics. Proceedings of the ACM / IEEE 45th Annual International Symposium on Computer Architecture ( ISCA’18 ), 2018, Jun 1 - 6, Los Angeles, CA, USA. Piscataway, NJ, USA: IEEE, 2018: 411 - 424.
[9] ZHANG Y, LIAO X F, JIN H, et al. DepGraph: a dependency- driven accelerator for efficient iterative graph processing. Proceedings of the 27th IEEE International Symposium on High- Performance Computer Architecture ( HPCA’21), 2021, Feb 27 - Mar 3, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2021: 371 - 384.
[10] DAI G H, HUANG T H, WANG Y, et al. GraphSAR: a sparsity- aware processing-in-memory architecture for large-scale graph processing on ReRAMs. Proceedings of the 24th Asia and South Pacific Design Automation Conference ( ASPDAC’19 ), 2019, Jan 21 - 24, Tokyo, Japan. New York, NY, USA: ACM, 2019: 120 - 126.
[11] ZHOU J H, LIU S L, GUO Q, et al. TuNao: a high-performance and energy-efficient reconfigurable accelerator for graph processing. Proceedings of the 17th IEEE / ACM International Symposium on Cluster, Cloud and Grid Computing ( CCGRID’17), 2017, May 14 - 17, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2017: 731 - 734.
[12] CHEN X Y, CHEN Y, CHENG F, et al. ReGraph: scaling graph processing on HBM-enabled FPGAs with heterogeneous pipelines. Proceedings of the 55th IEEE / ACM International Symposium on Microarchitecture ( MICRO’22 ), 2022, Oct 1 - 5, Chicago, IL, USA. Piscataway, NJ, USA: IEEE, 2022: 1342 - 1358.
[13] SUNDARAM N, SATISH N R, PATWARY M M A, et al. GraphMat: high performance graph analytics made productive. Proceedings of the VLDB Endowment, 2015, 8 ( 11 ): 1214 -1225.
[14] MAWHIRTER D, WU B. AutoMine: harmonizing high-level abstraction and high performance for graph mining. Proceedings of the 27th ACM Symposium on Operating Systems Principles ( SOSP’19), 2019, Oct 27 - 30, Huntsville, Canada. New York, NY, USA: ACM, 2019: 509 - 523.
[15] WANG L Y, WANG Y Z, YANG C, et al. A comparative study on exact triangle counting algorithms on the GPU. Proceedings of the 1st International Workshop on High Performance Graph Processing ( HPGP’16 ), 2016, May 31, Kyoto, Japan. New York, NY, USA: ACM, 2016: 1 - 8.
[16] AZAD A, BULUÇ A, GILBERT J. Parallel triangle counting and enumeration using matrix algebra. Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, 2015, May 25 - 29, Hyderabad, India. Piscataway, NJ, USA: IEEE, 2015: 804 - 811.
[17] CHAKRABORTY S, ENGELS C. Lower bounds for lexicographical DFS data structures. Proceedings of the 2022 Data Compression Conference ( DCC’22 ), 2022, Mar 22 - 25, Snowbird, UT, USA. Piscataway, NJ, USA: IEEE, 2022: 449.
[18] ZHANG Z W, YU J X, QIN L, et al. Divide & conquer: I / O efficient depth-first search. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data ( SIGMOD’15), 2015, May 31 - Jun 4, Melbourne, Australia. New York, NY, USA: ACM, 2015: 445 - 458.
[19] UMUROGLU Y, MORRISION D, JAHRE M. Hybrid breadth-first search on a single-chip FPGA-CPU heterogeneous platform. Proceedings of the 25th International Conference on Field Programmable Logic and Applications ( FPL’15 ), 2015, Sep 2 - 4, London, UK. Piscataway, NJ, USA: IEEE, 2015: 1 - 8.
[20] GONZALEZ J E, LOW Y, GU H J, et al. PowerGraph: distributed graph-parallel computation on natural graphs. Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation ( OSDI’12), 2012, Oct 8 - 10, Hollywood, CA, USA. Berkeley, CA, USA: USENIX Association, 2012: 17 - 30.
[21] ZHOU S J, CHEMLMIS C, PRASANNA V K. High-throughput and energyefficient graph processing on FPGA. Proceedings of the IEEE 24th Annual International Symposium on Field- Programmable Custom Computing Machines ( FCCM’16 ), 2016, May 1 - 3, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2016: 103 - 110.
[22] YIN L X, WANG J, ZHENG H. Exploring architecture, dataflow, and sparsity for GCN accelerators: a holistic framework. Proceedings of the Great Lakes Symposium on VLSI 2023 ( GLSVLSI’23 ), 2023, Jun 5 - 7, Knoxville, TN, USA. New York, NY, USA: ACM, 2023: 489 - 495.
[23] REN H, DENG J Y, ZHANG B X, et al. A breadth-first search algorithm accelerator based on CSCI graph data format. Proceedings of the 4th International Conference on Natural Language Processing ( ICNLP’22 ), 2022, Mar 25 - 27, Xi’an, China. Piscataway, NJ, USA: IEEE, 2022: 636 - 640.
[24] DANN J, RITTER D, FRÖNING H. GraphScale: scalable bandwidth-efficient graph processing on FPGAs. Proceedings of the 32nd International Conference on Field-Programmable Logic and Applications ( FPL’22 ), 2022, Aug 29 - Sep 2, Belfast, UK. Piscataway, NJ, USA: IEEE, 2022: 24 - 32.
[25] LIU C Q, LIU H F, ZHENG L, et al. FNNG: a high-performance FPGA-based accelerator for K-nearest neighbor graph construction. Proceedings of the 2023 ACM / SIGDA International Symposium on Field Programmable Gate Arrays ( FPGA’23 ), 2023, Feb 12 - 14, Monterey, CA, USA. New York, NY, USA: ACM, 2023: 67 - 77.
[26] SHUN J L, BLELLOCH G E. Ligra: a lightweight graph processing framework for shared memory. Proceedings of the 18th ACM SIGPLAN Symposium on Principles And Practice of Parallel Programming ( PPoPP’13 ), 2013, Feb 23 - 27, Shenzhen, China. New York, NY, USA: ACM, 2013: 135 - 146.
[27] NAI L F, XIA Y L, TANASE I G, et al. GraphBIG: understanding graph computing in the context of industrial solutions. Proceedings of the 2015 International Conference for High Performance Computing, Networking, Storage and Analysis ( SC’15 ), 2015, Nov 15 - 20, Austin, TX, USA. Piscataway, NJ, USA: IEEE, 2015: 1 - 12.
|