References
1. Rawat D B, Shetty S, Xin C S. Stackelberg-game-based dynamic spectrum access in heterogeneous wireless systems. IEEE Systems Journal, 2015(99): 1 -11
2. Gui J S, Hui L H, Xiong N X. A game-based localized multi-objective topology control scheme in heterogeneous wireless networks. IEEE Access, 2017(99): 1
3. Asheralieva A. Bayesian reinforcement learning-based coalition formation for distributed resource sharing by device-to-device users in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 2017(99): 1
4. Yang C G, Li J D, Anpalagan A, et al. Joint power coordination for spectral-and-energy efficiency in heterogeneous small cell networks: a bargaining game-theoretic perspective. IEEE
Transactions on Wireless Communications, 2016, 15(2): 1364 -1376
5. Wu D C, Wu Q H, Xu Y H, et al. QoE-based distributed multichannel allocation in 5G heterogeneous cellular networks: a matching-coalitional game solution. IEEE Access, 2017, 5(99):
61 -71
6. Tang X, Ren P Y, Han Z. Hierarchical power competition for security enhancement in wireless networks. IEEE International Conference on Communications, IEEE, 2017: 1 -6
7. Asheralieva A, Miyanaga Y. An autonomous learning-based algorithm for joint channel and power level selection by D2D pairs in heterogeneous cellular networks. IEEE Transactions on
Communications, 2016(99): 1
8. Bennis M, Perlaza S M, Blasco P, et al. Self-organization in small cell networks: a reinforcement learning approach. IEEE Transactions on Wireless Communications, 2013, 12(7): 3202 -3212
9. Xu C, Sheng M, Wang X J, et al. Distributed subchannel allocation for interference mitigation in OFDMA femtocells: a utility-based learning approach. IEEE Transactions on Vehicular
Technology, 2015, 64(6): 2463 -2475
10. Zheng J C, Wu Y, Zhang N, et al. Optimal power control in ultra-dense small cell networks: a game-theoretic approach. IEEE Transactions on Wireless Communications, 2017, 16(7): 4139 -4150
11. Li Y, Jin D P, Yuan J, et al. Coalitional games for resource allocation in the device-to-device uplink underlaying cellular networks. IEEE Transactions on Wireless Communications, 2014,
13(7): 3965 -3977
12. Semasinghe P, Hossain E, Zhu K. An evolutionary game for distributed resource allocation in self-organizing small cells. Mobile Computing IEEE Transactions on, 2015, 14(2): 274 -287
13. Yang C G, Li J D, Semasinghe P, et al. Distributed interference and energy-aware power control for ultra-dense D2D networks: a mean field game. IEEE Transactions on Wireless Communications, 2017, 16(2): 1205 -1217
14. Samarakoon S, Bennis M, Saad W, et al. Ultra dense small cell networks: turning density into energy efficiency. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1267 -1280
15. Yang C G, Li J D, Sheng M, et al. Mean field game-theoretic framework for interference and energy-aware control in 5G ultra-dense networks. IEEE Wireless Communications, 2017(99): 1 -8
16. Samarakoon S, Bennis M, Saad W, et al. Energy-efficient resource management in ultra dense small cell networks: a mean-field approach, 2015: 1 -6
17. Chen G, Zhong W, Tian H. Relay selection in cognitive relay networks via potential game. Wireless Communications and Networking Conference, IEEE, 2013: 3676 -3681
18. Zheng J C, Cai Y M, Liu Y K, et al. Optimal power allocation and user scheduling in multicell networks: base station cooperation using a game-theoretic approach. Wireless Communications IEEE Transactions on, 2014, 13(12): 6928 -6942
19. Song Y, Zhang C, Fang Y G. Joint channel and power allocation in wireless mesh networks: a game theoretical perspective. IEEE Journal on Selected Areas in Communications, 2008, 26 (7): 1149 -1159
20. Wang X D, Zheng W, Liu J F, et al. Distributed power self-optimization with convex pricing in dense femtocell networks via an exact potential game, 2013: 1919 -1923
21. Chen Z Q, Liu Y Y, Zhou B, et al. Caching incentive design in wireless D2D networks: a stackelberg game approach, 2016
22. Lyu J, Yong H C, Wong W C. A stackelberg game model for overlay D2D transmission with heterogeneous rate requirements. IEEE Transactions on Vehicular Technology, 2016, 65 (10): 8461 -8475
23. Wang Z, Hu B, Wang X, et al. Interference pricing in 5G ultra-dense small cell networks: a stackelberg game approach. Iet Communications, 2016, 10(15): 1865 -1872
24. Kang X, Zhang R, Motani M. Price-based resource allocation for spectrum-sharing femtocell networks: a stackelberg game approach. IEEE Journal on Selected Areas in Communications, 2011, 30 (3): 538 -549
25. Haddadi S, Ghasemi A. Pricing-based stackelberg game for spectrum trading in self-organised heterogeneous networks. Iet Communications, 2016, 10(11): 1374 -1383
26. Liu Y, Wang R, Han Z. Interference-constrained pricing for D2D networks. IEEE Transactions on Wireless Communications, 2016 (99): 1
27. Liu L, Garcia V, Tian L, et al. Joint clustering and inter-cell resource allocation for CoMP in ultra dense cellular networks. IEEE International Conference on Communications, IEEE, 2015:
2560 -2564
28. Han Z, Niyato D, Saad W, et al. Game theory in wireless and communication networks: theory, models, and applications. Cambridge University Press, 2012
29. Yates R D. A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications, 2002, 13(7): 1341 -1347
30. Lahoud S, Khawam K, Martin S, et al. Energy-efficient joint scheduling and power control in multi-cell wireless networks. IEEE Journal on Selected Areas in Communications, 2016, 34 (12): 3409 -3426
31. Giupponi L, Ibars C. Distributed interference control in OFDMA-based femtocells. IEEE, International Symposium on Personal Indoor and Mobile Radio Communications, IEEE, 2010: 1201 -1206 |