1. Ichikawa A, Hiraishi K. Analysis and control of discrete event systems represented by Petri nets. Discrete Event Systems: Models and Applications, 2006, 103(1): 115-134
2. Sarkar D, Das S K, Agrawal V K, et al. A new methodology for analyzing distributed systems modeled by Petri nets. International Journal of Computer Mathematics, 2007, 31(3): 153-165
3. Ma Z Y, Li Z W, Giua A. Design of optimal Petri net controllers for disjunctive generalized mutual exclusion constraints. IEEE Transactions on Automatic Control, 2013, 60(7): 1774-1785
4. Xiu J P, Xu Y T, Deng F, et al. A Petri net-based approach for data race detection in BPEL. Journal of China Universities of Posts and Telecommunications, 2010, 17(9): 10-15
5. Peleties P, Decarlo R. Analysis of a hybrid system using symbolic dynamics and Petri Nets. Automatica, 1994, 30(9): 1421-1427
6. Wu N Q, Bai L P, Chu C B. Hybrid Petri net modeling for refinery process. Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (SMC’04): Vol 2, Oct 10-13, 2004, The Hague, Netherlands. Piscataway, NJ, USA: IEEE, 2004: 1734-1739
7. Murata T. Petri nets: properties, analysis and applications. Proceedings of the IEEE, 1989, 77(4): 541-580
8. Reisig W. Petri nets: an introduction. New York, NY, USA: Springer-Verlag, 1987
9. Bourdeaud’huy T, Hanafi S, Yim P. Mathematical programming approach to the Petri nets reachability problem. European Journal of Operational Research, 2007, 177(1): 176-197
10. Rathke J, Sobocinski P, Stephens O. Reachability problems. New York, NY, USA: Springer, 2014: 230-243
11. Reinhardt K. Reachability in Petri nets with inhibitor arcs. Electronic Notes in Theoretical Computer Science, 2008, 223: 239-264
12. Wimmel H, Wolf K. Applying CEGAR to the Petri net state equation. Proceedings of the 17th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11), Mar 26-Apr 3, 2011, Saarbrücken, Germany. LNCS 6605. Berlin, Germany: Springer, 2011: 224-238
13. Ramachandran P, Kamath M. A sufficient condition for reachability in a general Petri net. Discrete Event Dynamic Systems: Theory and Applications, 2004, 14(14): 251-266
14. Ahmad F, Huang H J, Wang X L. A technique for reachability graph generation for the Petri net models of parallel processes. International Journal of Electrical and Electronics Engineering, 2009, 3(1): 57-61
15. Chiola G, Dutheillet C, Franceschinis G, et al. A symbolic reachability graph for coloured Petri nets. Theoretical Computer Science, 1997, 176(1/2): 39-65
16. Notomi M, Murata T. Hierarchical reachability graph of bounded Petri nets for concurrent-software analysis. IEEE Transactions on Software Engineering, 1994, 20(5): 325-336
17. Pastor E, Cortadella J, Roig O. Symbolic analysis of bounded Petri nets. IEEE Transactions on Computers, 2001, 50(5): 432-448
18. Zhou K Q, Zain A M, Mo L P. A decomposition algorithm of fuzzy Petri net using an index function and incidence matrix. Expert Systems with Applications, 2015, 42(8): 3980-3990
19. Boucheneb H, Rakkay H. A more efficient time Petri net state space abstraction useful to model checking timed linear properties. Fundamenta Informaticae, 2008, 88(4): 469-495
20. Cheng D Z. Semi tensor product of matrices and its applications to Morgan’s problem. Science in China Series: Information Sciences, 2001, 44(3): 195-212
21. Qi H S, Cheng D Z. Analysis and control of Boolean networks: a semi-tensor product approach. Acta Automatica Sinica, 2011, 37(5): 1352-1356
22. Han X G, Chen Z Q, Zhang K Z, et al. Modeling and reachability analysis of a class of Petri nets via semi-tensor product of matrices. Proceedings of the 34th Chinese Control Conference, Jul 28-30, 2015, Hangzhou, China. Piscataway, NJ, USA: IEEE, 2015: 6586-6591
23. Han X G, Chen Z Q, Liu Z X, et al. Calculation of siphons and minimal siphons in Petri nets based on semi-tensor product of matrices. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2015, DOI: 10.1109/TSMC.2015.2507162
24. Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Transactions on Automatic Control, 2010, 55(10): 2251-2258
25. Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2011, 45(7): 1659-1667
26. Guo P L, Wang Y Z, Li T. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method. Automatica, 2013, 49(11): 3384-3389
27. Xu X R, Hong Y G. Matrix expression and reachability of finite automata. Journal of Control Theory and Applications, 2012, 10(2): 210-215
28. Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Frontiers of Computer Science, 2014, 8(6): 948-957
29. Yan Y Y, Chen Z Q, Liu Z X. Verification analysis of self-verifying automata via semi-tensor product of matrices. Journal of China Universities of Posts and Telecommunications, 2014, 21(4): 96-104
30. Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48(7): 1227-1236
31. Cheng D Z, Qi H S, Zhao Y. An introduction to semi-tensor product of matrices and its applications. Singapore: World Scientific, 2012
32. Yan Y Y, Chen Z Q, Liu Z X. Modelling combined automata via semi-tensor product of matrices. Proceedings of the 33th Chinese Control Conference, Jul 28-30 2014, Nanjing, China. Piscataway, NJ, USA: IEEE, 2014: 6560-6565
33. Buchholz P, Kemper P. Hierarchical reachability graph generation for Petri nets. Formal Methods in System Design, 2010, 21(3): 281-315