The Journal of China Universities of Posts and Telecommunications ›› 2019, Vol. 26 ›› Issue (4): 51-61.doi: DOI: 10.19682/j.cnki.1005-8885.2019.1017
• Artificial intelligence • Previous Articles Next Articles
Zhai Qi, Jiang Mingyan
Received:
2018-06-05
Revised:
2019-08-16
Online:
2019-08-31
Published:
2019-10-29
Contact:
Corresponding author: Jiang Mingyan, E-mail: jiangmingyan@sdu.edu.cn
E-mail:jiangmingyan@sdu.edu.cn
About author:
Corresponding author: Jiang Mingyan, E-mail: jiangmingyan@sdu.edu.cn
Supported by:
CLC Number:
Zhai Qi, Jiang Mingyan. Supervised learning of enhancing convolutional Hash for image retrieval[J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(4): 51-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jcupt.bupt.edu.cn/EN/DOI: 10.19682/j.cnki.1005-8885.2019.1017
References
1. Gong Y, Lazebnik S, Gordo A, et al. Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916 -2929
2. He J, Liu W, Chang S F. Scalable similarity search with optimized kernel hashing. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 25 -28, 2010, Washington, USA. New York, NY, USA: ACM, 2010: 1129 -1138
3. Kulis B, Grauman K. Kernelized locality-sensitive hashing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6): 1092 -1104
4. Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science, Oct 21 -24, 2006, Berkeley, CA, USA. Los Alamitos, CA, USA: IEEE Computer Society, 2006: 459 -468
5. Weiss Y, Torralba A, Fergus R. Spectral hashing. Proceedings of the 21st International Conference on Neural Information Processing Systems, Dec 08 - 10, 2008, Vancouver, British Columbia Canada. USA: Curran Associates Inc, 2008: 1753 -1760
6. Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145 -175
7. Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20 - 25, 2005, San Diego, CA, USA, US. Los Alamitos, CA, USA: IEEE COMPUTER SOC, 2005: 886 -893
8. David G L. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91 -110
9. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 07 -12, 2015, Boston, MA. New York, NY, USA: IEEE, 2015: 3431 -3440
10. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun 27 - 30, 2016, Las Vegas, NV, USA. New York, NY, USA: IEEE, 2016: 770 -778
11. Redmon J, Divvala S, Girshick R, et al. You Only Look Once: unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun 27 -30, 2016, Las Vegas, NV, USA. New York, NY, USA: IEEE, 2016:779 -788
12. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2014, 115(3):211 -252.
13. Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23 - 28, 2014, Columbus, OH, USA. New York, NY, USA: IEEE, 2014: 1717 -1724
14. Ali S R, Hossein A, Josephine S, et al. CNN features off-the-shelf: an astounding baseline for recognition. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 23 -28, 2014, Columbus, OH, USA. New York, NY, USA: IEEE, 2014: 512 -519
15. Babenko A, Slesarev A, Chigorin A, et al. Neural codes for image retrieval. Proceedings of 13th European Conference on Computer Vision, Sep 06 -12, 2014, Zurich, Switzerland. Switzerland: Springer Publishing AG, 2014: 584 -599
16. Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142 -158
17. Chatfield K, Simonyan K, Vedaldi A, et al. Return of the devil in the details: delving deep into convolutional nets. Proceedings of the 25th British Machine Vision Conference, Sep 1st -5th, 2014, Nottingham, UK, 2014: 54 -65
18. Lin K, Yang H F, Hsiao J H, et al. Deep learning of binary hash codes for fast image retrieval. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 08 -10, 2015, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 27 -35
19. Razavian A S, Sullivan J, Carlsson S, et al. Visual instance retrieval with deep convolutional networks. ITE Transactions on Media Technology and Applications, 2016, 4(3): 251 -258
20. Wu S, Oerlemans A, Bakker E M, et al. Deep binary codes for large scale image retrieval. Neurocomputing, 2017, 257: 5 -15
21. Babenko A, Lempitsky V. Aggregating local deep features for image retrieval. Proceedings of IEEE International Conference on Computer Vision Computer Science, Dec 11 -18, 2015, Santiago, Chile. New York, NY, USA: IEEE, 2015: 1269 -1277
22. Li Y, Xu Y, Wang J, et al. MS -RMAC: multi-scale regional maximum activation of convolutions for image retrieval. IEEE Signal Processing Letters, 2017, 24(5): 609 -613
23. Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. Proceedings of 13th European Conference on Computer Vision, Sep 06 - 12, 2014 Zurich, Switzerland. Switzerland: Springer International Publishing, 2014: 818 -833
24. Salakhutdinov R, Hinton G. Semantic hashing. International Journal of Approximate Reasoning, 2009, 50(7): 969 -978
25. Xia R, Pan Y, Lai H, et al. Supervised hashing for image retrieval via image representation learning. Proceedings of 28th AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Quebec City, Quebec, Canada, 2014: 2156 -2162
26. Lai H, Pan Y, Liu Y, et al. Simultaneous feature learning and hash coding with deep neural networks. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Jun 07 -12, 2015, Boston, MA, USA. New York, NY USA: IEEE, 2015: 3270 -3278
27. Yang H F, Lin K, Chen C S. Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 437 -451
28. Zhao W, Luo H, Peng J, et al. Spatial pyramid deep hashing for large-scale image retrieval. Neurocomputing, 2017, 243: 166 -173
29. Jiang Q Y, Cui X, Li W J. Deep discrete supervised hashing. IEEE Transactions on Image Processing, 2018, 27(12): 5996 -6009
30. Liu H, Wang R, Shan S, et al. Deep supervised hashing for fast image retrieval. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun 27 -30, 2016, Las Vegas, NV, USA. New York, NY, USA: IEEE, 2016: 2064 -2072
31. Szegedy C, Liu N W, Jia N Y, et al. Going deeper with convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Jun 07 -12, 2015, Boston, MA, USA. New York, NY USA: IEEE, 2015: 1 -9
32. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, April 11 - 13, 2011, Fort Lauderdale, Florida, USA. Cambridge, MA, USA: MIT Press, 2011: 315 -323
33. He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proceedings of 2015 IEEE International Conference on Computer Vision, Dec 07 - 13, 2015, Santiago, Chile. New York, NY, USA: IEEE, 2015: 1026 -1034
34. Netzer Y, Wang T, Coates A, et al. Reading digits in natural images with unsupervised feature learning. Proceedings of 21st International Conference on Pattern Recognition, Nov 11 -15, 2012, Tsukuba, Japan. New York, NY, USA: IEEE, 2012: 3304 -3308
35. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. Technical Report, Computer Science Department, University of Toronto, 2009
36. Nilsback M E, Zisserman A. A visual vocabulary for flower classification. Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17 -22, 2006, New York, NY, USA, USA. New York, NY USA: IEEE, 2006: 1447 -1454
37. Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, Dec 03 -06, 2012, Lake Tahoe, Nevada. USA: Curran Associates Inc, 2012:1097 -1105
38. Kulis B, Darrell T. Learning to hash with binary reconstructive embeddings. Proceedings of the 22nd International Conference on Neural Information Processing Systems, Dec 07 -10, 2009, Vancouver, British Columbia, Canada. USA: Curran Associates Inc, 2009: 1042 -1050
39. Norouzi M, Fleet D J. Minimal loss hashing for compact binary codes. Proceedings of the 28th International Conference on International Conference on Machine Learning, June 28 -July 02, 2011, Bellevue, Washington, USA. USA: Omnipress, 2011: 353 -360 |
[1] | Li Hao, Zhang Linghua, Tong Cheng, Zhou Chenyang. Short-term load forecasting model based on gated recurrent unit and multi-head attention [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(3): 25-31. |
[2] | Du Rong, Chen Shudong, Li Weiwei, Zhang Xueting, Wang Xianhui, Ge Jin. Data augmentation via joint multi-scale CNN and multi-channel attention for bumblebee image generation [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(3): 32-40. |
[3] | Wu Qing, Wang Fan, Fan Jiulun, Hou Jing. L2,1-norm robust regularized extreme learning machine for regression using CCCP method [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(2): 61-72. |
[4] | Wu Qing, Li Feiyan, Zhang Hengchang, Fan Jiulun, Gao Xiaofeng. Least squares twin support vector machine with asymmetric squared loss [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 1-16. |
[5] | Zhang Huibin, Li Tianzhu, Liu Haojiang, Li Zhuotong. Deep learning-based symbol detection algorithm in IMDD-OOFDM system [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 36-45. |
[6] | Jiang Fan, Chen Jiajun, Gao Youjun, Sun Changyin. Research on ECG classification based on transfer learning [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 83-96. |
[7] | DUAN Lian. Low-light image enhancement algorithm using a residual network with semantic information [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(2): 52-62. |
[8] | Wu Qing, Fu Yanlin, Fan Jiulun, Ma Tianlu. Structural regularized twin support vector machine based on within-class scatter and between-class scatter [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(4): 39-52. |
[9] | . Human motion prediction using optimized sliding window polynomial fitting and recursive least squares [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(3): 76-85. |
[10] | . TCL: a taxi trajectory prediction model combining time and space features [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(3): 63-75. |
[11] | He Mingshu, Jin Lei, Wang Xiaojuan, Li Yuan. Web log classification framework with data augmentation based on GANs [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(5): 34-46. |
[12] | Ji Yimu, Li Ke, Liu Shangdong, Liu Qiang, Yao Haichang, Li Kui. Collaborative filtering recommendation algorithm based on interactive data classification [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(5): 1-12. |
[13] | Yang Jianjian, Zhang Qiang, Wang Xiaolin, Du Yibo, Wang Chao, Wu Miao. Research on equipment fault diagnosis method based on random stochastic adaptive particle swarm optimization [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(4): 17-25. |
[14] | Pang Hao, Bu Yunyun, Wang Cong, Xiao Hui. Automatic detection of breast nodule in the ultrasound images using CNN [J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(2): 9-16. |
[15] | Yang Ridong, Zhang Shiyu, Li Lin, Wang Zhe, Zhou Yi. Using boosting tree to learn imbalanced data [J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(2): 43-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||