The Journal of China Universities of Posts and Telecommunications ›› 2022, Vol. 29 ›› Issue (6): 73-82.doi: 10.19682/j.cnki.1005-8885.2022.1004
• Others • Previous Articles Next Articles
Kong Chao, Ou Weihua, Gong Xiaofeng, Li Weian, Han Jie, Yao Yi, Xiong Jiahao
Received:
2021-02-19
Revised:
2021-07-10
Online:
2022-12-30
Published:
2022-12-30
Contact:
Ou Weihua
E-mail:1305532268@qq.com
Supported by:
This work was supported by the National Natural Science Foundation of China (61962010, 62262005), and the Natural
Science Foundation of Guizhou Priovince ( QianKeHeJichu [2019]1425).
CLC Number:
Kong Chao, Ou Weihua, Gong Xiaofeng, Li Weian, Han Jie, Yao Yi, Xiong Jiahao. Face anti-spoofing based on multi-modal and multi-scale features fusion[J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(6): 73-82.
1. ZHANG S F, ZHU X Y, LEI Z, et al. Detecting face with densely connected face proposal network. Neurocomputing, 2018, 284: 119-127 2. ZHANG S F, WANG X B, LEI Z, et al. Faceboxes: A CPU real-time and accurate unconstrained face detector. Neurocomputing, 2019, 364: 297-309 3. WANG X B, ZHANG S F, WANG S, et al. Mis-classified vector guided softmax loss for face recognition. Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20), 2020, Feb 7-12, Honolulu, HI, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2020: 12241-12248 4. ZHANG S F, WEN L Y, SHI H L, et al. Single-shot scale-aware network for real-time face detection. International Journal of Computer Vision, 2019, 127(6): 537-559 5. CHI C, ZHANG S, XING J, et al. Selective refinement network for high performance face detection. Proceedings of the 33th AAAI Conference on Artificial Intelligence (AAAI’19), 2019, Jan 27-Feb 1, New York, NY, USA. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2019: 8231-8238 6. YANG X, LUO W H, BAO L C, et al. Face anti-spoofing: Model matters, so does data. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 3507-3516 7. ALOTAIBI A, MAHMOOD A. Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal, Image and Video Processing, 2017, 11(4): 713-720 8. PINTO A, SCHWARTZ W R, PEDRINI H, et al. Using visual rhythms for detecting video-based facial spoof attacks. IEEE Transactions on Information Forensics and Security, 2015, 10(5): 1025-1038 9. BOULKENAFET Z, KOMULAINEN J, HADID A. Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Processing Letters, 2016, 24(2): 141-145 10. CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing. Proceedings of the 2012 International Conference of Biometrics Special Interest Group (BIOSIG’12), 2012, Sept 6-7, Darmstadt, Germany. Piscataway, NJ, USA: IEEE, 2012: 7p 11. PAN G, SUN L, WU Z H, et al. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. Proceedings of the IEEE 11th International Conference on Computer Vision, 2007, Oct 14-21, Rio de Janeiro, Brazil. Piscataway, NJ, USA: IEEE, 2007: 8p 12. TAN X Y, LI Y, LIU J, et al. Face liveness detection from a single image with sparse low rank bilinear discriminative model. Computer Vision: Proceedings of the 11th European Conference on Computer Vision (ECCV’10): Part VI, 2010, Sept 5-11, Heraklion, Greece. LNCS 6316. Berlin, Germany: Springer, 2010: 504-517 13. MÄÄTTÄ J, HADID A, PIETIKÄINEN M. Face spoofing detection from single images using texture and local shape analysis. IET Biometrics, 2012, 1(1): 3-10 14. OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987 15. YANG J W, LEI Z, LIAO S C, et al. Face liveness detection with component dependent descriptor. Proceedings of the 2013 International Conference on Biometrics (ICB’13), 2013, Jun 4-7, Madrid, Spain. Piscataway, NJ, USA: IEEE, 2013: 6p 16. SCHWARTZ W R, ROCHA A, PEDRINI H. Face spoofing detection through partial least squares and low-level descriptors. Proceedings of the 2011 IEEE International Joint Conference on Biometrics (IJCB’11), 2011, Oct 11-13, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2011: 8p 17. KIM W, SUH S, HAN J J. Face liveness detection from a single image via diffusion speed model. IEEE Transactions on Image Processing, 2015, 24(8): 2456-2465 18. BOULKENAFET Z, KOMULAINEN J, HADID A. Face anti-spoofing based on color texture analysis. Proceedings of the 2015 International Conference on Image Processing (ICIP’15), 2015, Sept 27-30, Quebec City, Canada. Piscataway, NJ, USA: IEEE, 2015: 2636-2640 19. PATEL K, HAN H, JAIN A K. Secure face unlock: Spoof detection on smartphones. IEEE Transactions on Information Forensics and Security, 2016, 11(10): 2268-2283 20. WEN D, HAN H, JAIN A K. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 746-761 21. XU Z Q, LI S, DENG W H. Learning temporal features using LSTM-CNN architecture for face anti-spoofing. Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR’15), 2015, Nov 3-6, Kuala Lumpur, Malaysia. Piscataway, NJ, USA: IEEE, 2015: 141-145 22. LI L, FENG X Y, BOULKENAFET Z, et al. An original face anti-spoofing approach using partial convolutional neural network. Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications (IPTA’15), 2016, Dec 12-15, Oulu, Finland. Piscataway, NJ, USA: IEEE, 2016: 6p 23. YANG J W, LEI Z , LI S Z . Learn convolutional neural network for face anti-spoofing. arXiv Preprint, arXiv:1408.5601, 2014 24. ATOUM Y, LIU Y J, JOURABLOO A, et al. Face anti-spoofing using patch and depth-based CNNs. Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB’17), 2017, Oct 1-4, Denver, CO, USA. Piscataway, NJ, USA: IEEE, 2017: 319-328 25. PATEL K, HAN H, JAIN A K. Cross-database face antispoofing with robust feature representation. Proceedings of the 11th Chinese Conference on Biometric Recognition (CCBR’16), 2016, Oct 14-16, Chengdu, China. LNIP 9967. Berlin, Germany: Springer, 2016: 611-619 26. LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 389-398 27. JOURABLOO A, LIU Y J, LIU X M. Face de-spoofing: Anti-spoofing via noise modeling. Proceedings of the 15th European Conference on Computer Vision (ECCV’18): Part XIII, 2018, Sept 8-14, Munich, Germany. LNCS 11217. Berlin, Germany: Springer, 2018: 290-306 28. FENG L T, PO L M, LI Y M, et al. Integration of image quality and motion cues for face anti-spoofing: A neural network approach. Journal of Visual Communication and Image Representation, 2016, 38(C): 451-460 29. LIU Y J, STEHOUWER J, JOURABLOO A, et al. Deep tree learning for zero-shot face anti-spoofing. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19), 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 4680-4689 30. ZHANG S F, LIU A J, WAN J, et al. Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(2): 182-193 31. LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17), 2017, Jul 21-26, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2017: 2117-2125 32. WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7794-7803 33. PARKIN A, GRINCHUK O. Recognizing multi-modal face spoofing with face recognition networks. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'19), 2019, Jun 16-17, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 1617-1623 34. YU Z T, QIN Y X, LI X B, et al. Multi-modal face anti-spoofing based on central difference networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'20), 2020, Jun 14-19, Seattle, WA, USA . Piscataway, NJ, USA: IEEE, 2020: 650-651 35. LIU A J, TAN Z C, LI X, et al. Static and dynamic fusion for multi-modal cross-ethnicity face anti-spoofing. arXiv Preprint, arXiv:1912.02340, 2019 36. HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770-778 37. HU J, SHEN L, SUN G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'18), 2018, Jun 18-23, Salt Lake City, UT, USA. Piscataway, NJ, USA: IEEE, 2018: 7132-7141 38. ZHANG S F, WANG X B, LIU A J, et al. A dataset and benchmark for large-scale multi-modal face anti-spoofing. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'19) , 2019, Jun 15-20, Long Beach, CA, USA. Piscataway, NJ, USA: IEEE, 2019: 919-928 39. IU X L, LU R G, LIU W. Face liveness detection based on enhanced local binary patterns. Proceedings of the 2017 Chinese Automation Congress (CAC’17), 2017, Oct 20-22, Jinan, China. Piscataway, NJ, USA: IEEE, 2017: 6301-6305 40. PARVEEN S, AHMAD S M S, ABBAS N H, et al. Face liveness detection using dynamic local ternary pattern (DLTP). Computers, 2016, 5(2): 10-11 41. KIM W, SUH S, HAN J J. Face liveness detection from a single imagevia diffusion speed model. IEEE Transactions on Image Processing. 2015, 24(8): 2456-2465. 42. MÄÄTTÄ J, HADID A, PIETIKÄINEN M. Face spoofing detection from single images using micro-texture analysis. Proceedings of the 2011 IEEE International Joint Conference on Biometrics (IJCB’11), 2011, Oct 11-13, Washington, DC, USA. Piscataway, NJ, USA: IEEE, 2011 |
[1] | Wang Xianlun, Wang Guangyu, Cui Yuxia. Facial expression recognition based on improved ResNet [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 28-38. |
[2] | Jia Wei, Gong Chao. Precise and efficient Chinese license plate recognition in the real monitoring scene of intelligent transportation system [J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(3): 1-14. |
[3] | Song Yue, Wu Chengmao, Tian Xiaoping, Song Qiuyu. Enhanced kernel-based fuzzy local information clustering integrating neighborhood membership [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(6): 65-81. |
[4] | Xue Chenzi, Wei Yifei, Zhang Yong. Performance optimization for smart grid blockchain integrated with fog computing using DDQN [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(2): 68-78. |
[5] | Wang Zhaoying, Zhou Junhua, Liao Zhonghua, Zhai Xiang, Zhang Lianping. Semantic segmentation of track image based on deep neural network [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(5): 23-33. |
[6] | Chen Faquan, Fan Jun. Real-time prediction of the motion tendency of human lower limbs during gait [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(4): 1-7. |
[7] | . Recognition of motor imagery tasks for BCI using CSP and chaotic PSO twin SVM [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2017, 24(3): 83-90. |
[8] | . Smooth support vector machine based on circular tangent function [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2016, 23(1): 68-72. |
[9] | . Dynamic and combined gestures recognition based on multi-feature fusion in a complex environment [J]. Acta Metallurgica Sinica(English letters), 2015, 22(2): 81-88. |
[10] | . Exposing photo manipulation with inconsistent perspective geometry [J]. Acta Metallurgica Sinica(English letters), 2014, 21(4): 83-91. |
[11] | LIU Jing , XU Guo-sheng, ZHENG Shi-hui, XIAO Da, GU Li-ze. Data streams classification with ensemble model based on decision-feedback [J]. Acta Metallurgica Sinica(English letters), 2014, 21(1): 79-85. |
[12] | Jia-Kuo ZUO. Orthogonal isometric projection for face recognition [J]. Acta Metallurgica Sinica(English letters), 2011, 18(1): 91-97. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 380
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||