1. Tam C, Bucknall R, Greig A. Review of collision avoidance and path planning methods for ships in close range encounters. The Journal of Navigation, 2009, 62(3): 455-476
2. Jean-Claude L. Robot motion planning. Boston, MA, USA: Kluwer Academic Publishers, 1991: 105-153
3. Kuffner J J, LaValle S M. RRT-connect: An efficient approach to single-query path planning. Proceedings of the 2000 IEEE International Conference on Robotics and Automation: Vol 2, 2000, Apr 24-28, San Francisco, CA, USA. Piscataway, NJ, USA: IEEE, 2000: 24-28
4. Karaman S, Walter M R, Perez A, et al. Anytime motion planning using the RRT*. Proceedings of the 2011 IEEE International Conference on Robotics and Automation, 2011, May 9-13, Shanghai, China. Piscataway, NJ, USA: IEEE, 2011: 6p
5. Karaman S, Frazzoli E. Optimal kinodynamic motion planning using Incremental sampling-based methods. Proceedings of the 49th IEEE Conference on Decision and Control (CDC'10), 2010, Dec 15-17, Atlanta, GA, USA. Piscataway, NJ, USA: IEEE, 2010: 7p
6. LaValle S M, Kuffner J J. Randomized kinodynamic planning. The International Journal of Robotics Research, 2001, 20(5): 378- 400
7. Li Y, Cui R X, Li Z J, et al. Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8718-8729
8. Chao N, Liu Y K, Xia H, et al. Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments. Annals of Nuclear Energy, 2018, 115: 73-82
9. Shome R, Solovey K, Dobson A, et al. dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning. Autonomous Robots, 2019, 44(3/4): 443-467
10. Kun W, Bingyin R. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. Sensors (Basel), 2018, 18(2): Article 571
11. Jones J, Safonov A. Slime mould inspired models for path planning: Collective and structural approaches. Adamatzky A (ed). Shortest Path Solvers: From Software to Wetware. Emergence, Complexity and Computation (ECC) 32. Berlin, Germany: Springer, 2018: 293-327
12. Uemura M, Matsushita H, Kraetzschmar G K. Path planning with slime molds: Abiology-inspired approach. Neural Information Processing: Proceedings of the 22nd International Conference on Neural Information Processing (ICONIP’15), 2015, Nov 9-12, Istanbul, Turkey. LNCS 9492. Berlin, Germany: Springer, 2015: 308-315
13. Tero A, Kobayashi R, Nakagaki T. A mathematical model for adaptive transport network in path finding by true slime mould. Journal of Theoretical Biology, 2007, 244(4): 553-564
14. Jeff J. Applications of multi-agent slime mould computing. International Journal of Parallel Emergent and Distributed Systems, 2016, 31(5): 420-449
15. Jones J, Adamatzky A. Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould. International Journal of Unconventional Computing, 2015, 11(1): 37-62
16. Kala R, Warwick K. Planning of multiple autonomous vehicles using RRT. Proceedings of the 10th IEEE International Conference on Cybernetic Intelligent Systems (CIS’11), 2011, Sept 1-2, London, UK. Piscataway, NJ, USA: IEEE, 2012: 6p
17. Zhang W M, Fu S X. Mobile robot path planning based on improved RRT*algorithm. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(1): 31-36 (in Chinese)
|