References
1. He H, Garcia E A. Learning fromimbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263 -1284
2. Maloof M A. Learning when data sets are imbalanced and when costs are unequal and unknown. Proc Int’l Conf Machine Learning, Workshop Learning from Imbalanced Data Sets II, 2003, 4(2): 1 -2
3. Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16(1): 321 -357
4. Chawla N V, Japkowicz N, Kotcz A. Editorial: special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 2004, 6(1): 1 -6
5. Weiss G M. Mining with rarity: a unifying framework. ACM Sigkdd Explorations Newsletter, 2004, 6(1): 7 -196
6. He H, Bai Y, Garcia E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning. Proc Int’l J Conf Neural Networks, 2008: 1322 -1328
7. Han H, Wang W Y, Mao B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. International Conference on Advances in Intelligent Computing. Springer-Verlag, 2005: 878 -887
8. Chawla N V, Lazarevic A, Hall L O, et al. SMOTEBoost: improving prediction of the minority class in boosting. Lecture Notes in Computer Science, 2003, 2838: 107 -119
9. Kubat M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection. International Conference on Machine Learning, 1997: 179 -186
10. Liu X Y, Wu J, Zhou Z H. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems Man and Cybernetics Part B, 2009, 39(2): 539 -550
11. Domingos P. MetaCost: a general method for making classifiers cost-sensitive. Proc Int’l Conf Knowledge Discovery and Data Mining, 1999: 155 -164
12. Guo H, Viktor H L. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM Sigkdd Explorations Newsletter, 2004, 6(1): 30 -39
13. Liu W, Chawla S, Cieslak D, et al. A robust decision tree algorithms for imbalanced data sets. In Proceedings of the Tenth SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, 2010: 766 -777
14. Kwok J T, Zhou Z H, Xu L. Machine learning. Springer Handbook of Computational Intelligence. Springer Berlin Heidelberg, 2015: 495 -522
15. Pedregosa, et al. Scikit-learn: machine learning in Python. JMLR 12, 2011: 2825 -2830
16. Zhou Z H, Tang W. Selectiveensemble of decision trees. Lecture Notes in Computer Science, 2003, 2639: 476 -483 |