References
1. Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008. GLOBOCAN 2008, Int J Cancer, Dec 15, 2010, 127(12): 2893 -2917
2. Siegel R L, Miller K D, Jemal A, et al. Cancer statistics. CA Cancer J Clin, 2018, 68(1): 7 -30
3. Allemani C, Matsuda T, Di C V, et al. Global surveillance of trends in cancer survival 2000 -14 (CONCORD -3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, Mar 17, 2018, 391(10125): 1023 -1075
4. Moghimi-Dehkordi B, Safaee A, Zali M R. Comparison of colorectal and gastric cancer: survival and prognostic factors. Saudi J Gastroenterol, 2009, 15(1): 18 -25
5. Morris E A, Sandin F, Lambert P C, et al. A population-based comparison of the survival of patients with colorectal cancer in England, Norway and Sweden between 1996 and 2004. Gut,
2011, 60(8): 1087 -1093
6. Gao P, Zhou X, Wang Z N, et al. Which is a more accurate predictor in colorectal survival analysis? Nine data mining algorithms vs the TNM staging system. PLoS One, 2012, 7(7):
42015
7. Chen Y C, Ke W C, Chiu H W. Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine, 2014, 48: 1 -7
8. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med, 2005, 34: 113 -127
9. Gevaert O, De S F, Timmerman D, et al. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 2006, 22: 184 -190
10. Xu X, Zhang Y, Zou L, et al. A gene signature for breast cancer prognosis using support vector machine. IEEE, 2012: 928 -931
11. Rosado P, Lequerica-Fernandez P, Villallain L, et al. Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines. Expert Syst Appl, 2013, 40: 4770 -4776
12. Hankey B F, Ries L A, Edwards B K. The surveillance, epidemiology, and end results program: a national resource. Cancer Epidemiol Biomarkers Prev, 1999, 8(12): 1117 -1121
13. Amin M B, Greene F L, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more 'personalized ' approach to cancer staging. CA Cancer J Clin, 2017, 67: 93 -99
14. Benson A B, et al. NCCN guidelines insights: colon cancer, version 2, 2018. J Natl Compr Canc Netw, 2018, 16: 359 -369
15. Kim J, Shin H. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J Am Med Inform Assoc, 2013, 20(4): 613 -618
16. Han J. Data mining concepts and techniques. 3rd edition. Waltham, USA: Morgan Kaufmann Press, 2012: 1 -38
17. Witten I H, Frank E, Hall M A, et al. Data mining: practical machine learning tools and techniques. 2nd edition. Waltham, USA: Morgan Kaufmann Press, 2006
18. Kotsiantis S B. Decision trees: a recent overview. Artif Intell Rev, 2013, 39(4): 261 -283
19. Van G M, Bohte S. Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 2017(11): 114p
20. Ravdin P M, Clark G M. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Trea, 1992, 22(3): 285 -293
21. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med, 2005, 34(2): 113 -127
22. Abdelaal M M, Farouq M W, et al. Using data mining for assessing diagnosis of breast cancer. Proceedings of the International Multiconference on Computer Science and Information
Technology, 2010: 11 -17
23. Flach P A, Hernandez-Orallo J, Ramirez C F. A coherent interpretation of AUC as a measure of aggregated classification performance. International Conference on Machine Learning,
ICML, DBLP, Bellevue, Washington, USA, June 28-July, 2011: 657 -664
24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. The Fourteenth International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufman Press, 1995: 1137 -1145
25. Genuer R, Poggi J M, et al. Variable selection using random forests. Pattern Recognition Letters, Elsevier, 2010, 31 (14): 2225 -2236
26. Burke H B, Goodman P H, Rosen D B, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer,1997, 79: 857 -862
27. Richards G, Rayward-Smith V J, Sonksen P H, et al. Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med, 2001, 22: 215 -231 |