References
1. Yu B F. Research and implementation of personalized medical information recommendation system. Zhejiang University, 2012
2. Li P, Yu Z X, Li N, et al. Research of intelligent medical recommendation system based on heterogeneous networks analysis. Chinese Journal of Health Informatics and Management, 2013, 10(6): 501 -506
3. Wu G L, Jiang C R. Design and implementation of personalized medical recommendation system based on collaborative filtering algorithm. FUJIAN COMPUTER, 2017, 33(8): 107p
4. Zhu H B, Mo J Y, Xu D H, et al. A smart medical personalized recommendation system and its implementation method. CN104036445A, 2014
5. Chen W Z, Lin S, Wang L, et al. Personalized recommendation algorithm of health advice based on the user's mobile trajectory. CAAI Transactions on Intelligent Systems, 2016, 11(2): 264 -271
6. Storn R, Price K. Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341 -359
7. Price K, Storn R M, Lampinen J A. Differential evolution: a practical approach to global optimization ( natural computing series). Springer-Verlag New York, Inc, 2005
8. Srinivas M, Patnaik L M. Genetic algorithms: a survey. Computer, 1994, 27(6): 17 -26
9. Kennedy J, Eberhart R. Particle swarm optimization. Proc of 1995 IEEE Int Conf Neural Networks, Perth, Australia, Nov 27 - Dec, 2011, 4(8): 1942 -1948
10. Karaboga D. An idea based on honey bee swarm for numerical optimization, 2005
11. Yang C, Ji J, Liu J, et al. Bacterial foraging optimization using novel chemotaxis and conjugation strategies. Information Sciences an International Journal, 2016, 363(C): 72 -95
12. Hinchey M G, Sterritt R, Rouff C. Swarms and swarm intelligence. Computer, 2007, 40(4): 111 -113
13. Yang C, Tu X, Chen J. Algorithm of marriage in honey bees optimization based on the wolf pack search. International Conference on Intelligent Pervasive Computing, IEEE Computer Society, 2007,871: 462 -467
14. Chen X, Tang C, Wang J, et al. A novel hybrid based on wolf pack algorithm and differential evolution algorithm. International Symposium on Computational Intelligence and Design, 2017: 69 -74
15. Jitkongchuen D, Phaidang P. Grey wolf algorithm with borda count for feature selection in classification. IEEE 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), 2018: 238 -242
16. Menassel R, Nini B, Mekhaznia T. An improved fractal image compression using wolf pack algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2017(399): 1 -11
17. Cao Q K, Yang K W, Ren X Y. Vehicle routing optimization with multiple fuzzy time windows based on improved wolf pack algorithm. Advances in Production Engineering and Management, 2017, 12(4): 401 -411
18. Chen Y B, Mei Y S, Yu J Q, et al. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing, 2017
19. Chandra A, Agarwal A, Ss S, et al. Grey wolf optimisation for inversion of layered earth geophysical datasets. Near Surface Geophysics, 2017, 15(5)
20. Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3): 46 -61
21. Zhu Y, Jiang W, Kong X, et al. A chaos wolf optimization algorithm with self-adaptive variable step-size. Aip Advances, 2017, 7(10): 105024
22. Qiang Z, Zhou Y Q. Wolf colony search algorithm based on leader strategy. Application Research of Computers, 2013, 30 (9 ): 2629 -2632
23. Saurabh K, Gupta S. Modified artificial wolf pack optimization for optimal power flow. International Conference on Circuit, Power and Computing Technologies, 2017: 1 -6
24. Amir A, Selvaraj J, Rahim N A, et al. Conventional and modified mppt techniques with direct control and dual scaled adaptive step-size. Solar Energy, 2017, 157: 1017 -1031 |