1. Klimov A, Shamir A. A new class of invertible mappings. Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES’02), Aug 13-15, 2002, Redwood Shores, CA, USA. LNCS 2523. Berlin, Germany: Springer-Verlag, 2003: 470-483
2. Klimov A, Shamir A. Cryptographic applications of T-functions. Proceedings of the 10th Workshop on Selected Areas in Cryptography (SAC’03), Aug 14-15, 2003, Ottawa, Canada. LNCS 3006. Berlin, Germany: Springer- Verlag, 2004: 248-261
3. Klimov A, Shamir A. New cryptographic primitives based on multiword T- functions. Proceedings of the 11st International Workshop on Fast Software Encryption (FSE’04), Feb 5-7, 2004, Delhi, India. LNCS 3017. Berlin, Germany: Springer-Verlag, 2004: 1-15
4. Zhang W Y, Wu C K. The algebraic normal form, linear complexity and k-error linear complexity of single-cycle T-function. Proceedings of the 4th International Workshop on Sequences and Their Applications (SETA’06), Sep 24-28, 2006, Beijing, China. LNCS 4086. Berlin, Germany: Springer-Verlag, 2006: 391-401
5. Zhao L, Wen Q Y. Linear complexity and stability of output sequences of single cycle T-function. Journal of Beijing University of Posts and Telecommunications, 2008, 31(4): 62-65 (in Chinese)
6. Wei S M, Xiao G Z, Chen Z. A fast algorithm for determining the linear complexity of a binary sequence with period 2npm. Science in China: Information Sciences, 2001, 44(6): 454-460
7. Kolokotronis N. Cryptographic properties of nonlinear pseudorandom number generators. Designs, Codes and Cryptography, 2008, 46(3): 353-363
8. Heydtmann A E, Jensen J M. On the equivalence of the Berlekamp-Massey and Euclidean algorithms for decoding. IEEE Transactions on Information Theory, 2000, 46(7): 2614-2624
9. Games R A. Chan A H. A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Transactions on Information Theory, 1983, 29(4): 144-146 |