Acta Metallurgica Sinica(English letters) ›› 2008, Vol. 15 ›› Issue (2): 122-124.doi: 1005-8885 (2008) 02-0122-03

• Wireless • Previous Articles     Next Articles

Research of stochastic weight strategy for extended particle swarm optimizer

XU Jun-jie, YUE Xin, XIN Zhan-hong   

  1. Economics and Management College, Anqing Teachers College,
    Anqing 246133, China
  • Received:2007-07-21 Revised:1900-01-01 Online:2008-06-30
  • Contact: XU Jun-jie

Abstract:

To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specified to a random number within the range of [0, 1] and the other two remain constant configurations. The simulations show that this weight strategy outperforms the previous deterministic approach with respect to success rate and convergence speed. The experi- ments also reveal that if the weight for global best neighbor is specified to a stochastic number, extended particle swarm optimizer achieves high and robust performance on the given multi-modal function.

Key words:

particle swarm optimization;evolutionary computation;stochastic weight;function optimization

CLC Number: