References
[1] VAN KRANENBURG R. The Internet of things: A critique of ambient technology and the all-seeing network of RFID. Amsterdam, Netherlands: Institute of Network Cultures, 2007.
[2] XU L D, HE W, LI S C. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2233 - 2243.
[3] Ericsson mobility report. White Paper, 2022.
[4] LUO X W, CHEN H H, GUO Q. Semantic communications: Overview, open issues, and future research directions. IEEE Wireless Communications, 2022, 29(1): 210 - 219.
[5] ZHANG H J, WANG H Y, LI Y B, et al. Toward intelligent resource allocation on task-oriented semantic communication. IEEE Wireless Communications, 2023, 30(3): 70 - 77.
[6] SUN Y H, CHEN S Q, WANG Z Y, et al. A joint learning and game-theoretic approach to multi-dimensional resource management in fog radio access networks. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2550 - 2563.
[7] HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing: A key technology towards 5G. ETSI White Paper 11. Sophia Antipolis, France: ETSI (European Telecommunications Standards Institute), 2015.
[8] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2322 - 2358.
[9] FAN C Q, SHE C Y, ZHANG H S, et al. Learning to optimize user association and spectrum allocation with partial observation in mmwave-enabled UAV networks. IEEE Transactions on Wireless Communications, 2022, 21(8): 5873 - 5888.
[10] HU Z Z, ZENG F Z, XIAO Z, et al. Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1630 - 1645.
[11] LIU B Y, WAN Y Y, ZHOU F H, et al. Resource allocation and trajectory design for miso UAV-assisted MEC networks. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4933 - 4948.
[12] XU Y, ZHANG T K, YANG D C, et al. UAV-assisted relaying and MEC networks: Resource allocation and 3D deployment. Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops'21), 2021, Jun 14 - 23, Montreal, Canada. Piscataway, NJ, USA: IEEE, 2021: 1 - 6.
[13] QI Q Y, SHI T, QIN K, et al. Completion time optimization in UAV-relaying-assisted MEC networks with moving users. IEEE Transactions on Consumer Electronics, Early Access Article. DOI: 10. 1109/TCE. 2023. 3278470.
[14] DIAO X B, YANG W D, YANG L X, et al. UAV-relaying-assisted multi-access edge computing with multi-antenna base station: Offloading and scheduling optimization. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9495 - 9509.
[15] MEI W D, ZHENG B X, YOU C S, et al. Intelligent reflecting surface-aided wireless networks: From single-reflection to multireflection design and optimization. Proceedings of the IEEE, 2022, 110(9): 1380 - 1400.
[16] ZHANG H J, HUANG M L, ZHOU H, et al. Capacity maximization in RIS-UAV networks: A DDQN-based trajectory and phase shift optimization approach. IEEE Transactions on Wireless Communications, 2023, 22(4): 2583 - 2591.
[17] MEI H B, YANG K, SHEN J, et al. Joint trajectory-task-cache optimization with phase-shift design of RIS-assisted UAV for MEC. IEEE Wireless Communications Letters, 2021, 10(7): 1586 - 1590.
[18] XU Y, ZHANG T K, LIU Y W, et al. Computation capacity enhancement by joint UAV and RIS design in IoT. IEEE Internet of Things Journal, 2022, 9(20): 20590 - 20603.
[19] ASIM M, ELAFFENDI M, EL-LATIF A A A. Multi-IRS and multi-UAV-assisted MEC system for 5G/6G networks: Efficient joint trajectory optimization and passive beamforming framework. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4553 - 4564.
[20] ZHAI Z Y, DAI X H, DUO B, et al. Energy-efficient UAV-mounted RIS assisted mobile edge computing. IEEE Wireless Communications Letters, 2022, 11(12): 2507 - 2511.
[21] SHNAIWER Y N, KANEKO M. Minimizing IoT energy consumption by IRS-aided UAV mobile edge computing. IEEE Networking Letters, 2023, 5(1): 16 - 20.
[22] FAN X K, LIU M, CHEN Y L, et al. RIS-assisted UAV for fresh data collection in 3D urban environments: A deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 2023, 72(1): 632 - 647.
[23] LI Y B, ZHANG H J, LONG K P, et al. Exploring sum rate maximization in UAV-based multi-IRS networks: IRS association, UAV altitude, and phase shift design. IEEE Transactions on Communications, 2022, 70(11): 7764 - 7774.
[24] LI S X, DUO B, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402 - 6417.
[25] FILIPPONE A. Flight performance of fixed and rotary wing aircraft. AIAA Education Series. New York, NY, USA: American Institute of Aeronautics and Astronautics (AIAA), 2006.
[26] ZENG Y, XU J, ZHANG R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329 - 2345.
[27] RUSSELL S J, NORVIG P. Artificial intelligence: A modern approach. 3rd ed. London, UK: Pearson, 2009.
[28] ZHANG H J, FENG L Z, LIU X N, et al. User scheduling and task offloading in multi-tier computing 6G vehicular network. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 446 - 456.
[29] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning. ArXiv Preprint, arXiv: 150902971, 2015.
|