References
[1] BOURTSOULATZE E, KURKA D B, GUNDUZ D. Deep joint source-channel coding for wireless image transmission. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 567 - 579.
[2] KURKA D B, GUNDUZ D. Successive refinement of images withdeep joint source-channel coding. Proceedings of the IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC'19), 2019, Jul 2 - 5, Cannes, France. Piscataway, NJ, USA: IEEE, 2019: 1 - 5.
[3] YANG M Y, KIM H S. Deep joint source-channel coding for wireless image transmission with adaptive rate control. Proceedings of the 2022 IEEE International Conference on Acoustics, Speechand Signal Processing (ICASSP'22), 2022, May 23 - 27, Singapore. Piscataway, NJ, USA: IEEE, 2022: 5193 - 5197.
[4] KURKA D B, GUNDUZ D. Deep joint source-channel coding of images with feedback. Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'20), 2020, May 4 - 8, Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2020: 5235 - 5239.
[5] ZHANG Z G, YANG Q Q, HE S B, et al. Semantic communication approach for multi-task image transmission. Proceedings of the IEEE 96th Vehicular Technology Conference (VTC-Fall'22), 2022, Sept 26 - 29, London, UK. Piscataway, NJ, USA: IEEE, 2022: 1 - 2.[6] KANG J W, DU H Y, LI Z H, et al. Personalized saliency in task-oriented semantic communications: Image transmission and performance analysis. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 186 - 201.
[7] XU J L, AI B, CHEN W, et al. Wireless image transmission using deep source channel coding with attention modules. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2315 - 2328.
[8] BAO X W, JIANG M, ZHANG H. ADJSCC-l: SNR-adaptive JSCC networks for multi-layer wireless image transmission. Proceedings of the 7th International Conference on Computer and Communications (ICCC'21), 2021, Dec 10 - 13, Chengdu, China. Piscataway, NJ, USA: IEEE, 2021: 1812 - 1816.
[9] BALLE J, LAPARRA V, SIMONCELLI E P. Density modeling of images using a generalized normalization transformation. arXiv Preprint, arXiv: 1511. 06281, 2016.
[10] HE K M, ZHANG X Y, REN S Q, et al. Delving deep intorectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV'15), 2015, Dec 7 - 13, Santiago, Chile. Piscataway, NJ, USA: IEEE, 2015: 1026 -1034.
[11] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27 - 30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 770 - 778.
[12] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks. Computer Vision: Proceedings of the 14th European Conference on Computer Vision (ECCV'16), 2016, Oct 11 - 14, Amsterdam, Netherlands. LNIP 9908. Berlin, Germany: Springer, 2016: 630 - 645.
[13] KRIZHEVSKY A. Learning multiple layers of features from tiny images. Corpus ID:18268744. Toronto, Canada: University of Toronto, 2009. https://www. cs. toronto. edu/~ kriz/learning-features-2009-TR. pdf.
[14] ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv Preprint, arXiv: 1603. 04467, 2016.
[15] KINGMA D P, BA J. Adam: A method for stochastic optimization. arXiv Preprint, arXiv: 1412. 6980, 2014.
[16] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600 - 612.
[17] KURKA D B, GUNDUZ D. DeepJSCC-f: Deep joint source-channel coding of images with feedback. IEEE Journal on Selected Areas in Information Theory, 2020, 1(1): 178 - 193.
|