The Journal of China Universities of Posts and Telecommunications ›› 2022, Vol. 29 ›› Issue (4): 51-68.doi: 10.19682/j.cnki.1005-8885.2022.2019
• Special Topic: Quantum Science and Technology • Previous Articles Next Articles
Han Yushan, Che Bichen, Liu Jiali, Dou Zhao, Di Junyu
Received:
2021-09-01
Revised:
2021-12-15
Accepted:
2022-06-29
Online:
2022-08-31
Published:
2022-08-31
Contact:
Dou Zhao, E-mail: dou@bupt.edu.cn
E-mail:dou@bupt.edu.cn
Supported by:
CLC Number:
Han Yushan, Che Bichen, Liu Jiali, Dou Zhao, Di Junyu. Nearly universal and efficient quantum secure multi-party computation protocol[J]. The Journal of China Universities of Posts and Telecommunications, 2022, 29(4): 51-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jcupt.bupt.edu.cn/EN/10.19682/j.cnki.1005-8885.2022.2019
References [1] YAO A C. Protocols for secure computations. Proceedings of the 23rd Annual Symposium on Foundations of Computer, 1982, Nov 3 -5, Chicago, IL, USA. Piscataway, NJ, USA: IEEE, 1982: 160 -164. [2] LO H K. Insecurity of quantum secure computations. Physical Review A, 1997, 56(2): 1154 -1162. [3] CREPEAU C, GOTTESMAN D, SMITH A. Secure multi-party quantum computation. Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC'02), 2002, May 19 -22, Montreal, Canada. New York, NY, USA: ACM, 2002: 643 -652. [4] BEN-OR M, CREPEAU C, GOTTESMAN D, et al. Secure multiparty quantum computation with (only) a strict honest majority. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), 2006, Oct 21 -24, Berkeley, CA, USA. Piscataway, NJ, USA: IEEE, 2006: 249 -260. [5] LI X H, WANG Y K, HAN Y G, et al. Self-testing of symmetric three-qubit states. IEEE Journal on Selected Areas in Communications, 2020, 38(3): 589 -597. [6] WEI C Y, CAI X Q, WANG T Y, et al. Error tolerance bound in QKD-based quantum private query. IEEE Journal on Selected Areas in Communications, 2020, 38(3): 517 -527. [7] YANG Y G, CAO W F, WEN Q Y. Secure quantum private comparison. Physica Scripta, 2009, 80(6): Article 065002. [8] GUO F Z, GAO F, QIN S J, et al. Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Information Processing, 2013, 12(8): 2793 -2802. [9] XU Q D, CHEN H Y, GONG L H, et al. Quantum private comparison protocol based on four-particle GHZ states. International Journal of Theoretical Physics, 2020, 59(6): 1798 -1806. [10] ZHOU N R, XU Q D, DU N S, et al. Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Information Processing, 2021, 20(3): Article 124. [11] YE C Q, LI J, CHEN X B, et al. Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Information Processing, 2021, 20(8): Article 262. [12] LANG Y F. Quantum gate-based quantum private comparison. International Journal of Theoretical Physics, 2020, 59(3): 833 -840. [13] JIA H Y, WEN Q Y, SONG T T, et al. Quantum protocol for millionaire problem. Optics Communications, 2011, 284 (1): 545 -549. [14] LIN S, SUN Y, LIU X F, et al. Quantum private comparison protocol with d-dimensional Bell states. Quantum Information Processing, 2013, 12(1): 559 -568. [15] LIU W, WANG Y B, SUI A N, et al. Quantum protocol for millionaire problem. International Journal of Theoretical Physics, 2019, 58(7): 2106 -2114. [16] ZHANG W W, LI D, ZHANG K J, et al. A quantum protocol for millionaire problem with Bell states. Quantum Information Processing, 2013, 12(6): 2241 -2249. [17] HE G P. Simple quantum protocols for the millionaire problem with a semi-honest third party. International Journal of Quantum Information, 2013, 11(2): Article 1350025. [18] ZHOU Y H, SHI W M, YANG Y G. A quantum protocol for millionaire problem with continuous variables. Communications in Theoretical Physics, 2014, 61(4): 452 -456. [19] DU J Z, CHEN X B, WEN Q Y, et al. Secure multiparty quantum summation. Acta Physica Sinica, 2007, 56(11): 6214 -6219 (in Chinese). [20] CHEN X B, XU G, YANG Y X, et al. An efficient protocol for the secure multi-party quantum summation. International Journal of Theoretical Physics, 2010, 49(11): 2793 -2804. [21] WU W Q, MA X X. Multi-party quantum summation without a third party based on d-dimensional Bell states. Quantum Information Processing, 2021, 20(6): Article 200. [22] LIU W, WANG Y B, FAN W Q. An novel protocol for the quantum secure multi-party summation based on two-particle Bell states. International Journal of Theoretical Physics, 2017, 56(9): 2783 -2791. [23] GAN Z G. Improvement of quantum protocols for secure multi-party summation. International Journal of Theoretical Physics, 2020, 59(10): 3086 -3092. [24] DEUTSCH D E, BARENCO A, EKERT A. Universality in quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1995, 449(1937): 669 -677. [25] BRAVYI S, KITAEV A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 2005, 71(2): Article 022316. [26] CHEN X B, DOU Z, XU G, et al. A kind of universal quantum secret sharing protocol. Scientific Reports, 2017, 7(1): Article 39845. [27] CHEN X B, DOU Z, XU G, et al. A class of protocols for quantum private comparison based on the symmetry of states. Quantum Information Processing, 2014, 13(1): 85 -100. [28] AKSIT M, CHOUKAIR Z. Dynamic, adaptive and reconfigurable systems overview and prospective vision. Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, 2003, May 19 -22, Providence, RI, USA. Piscataway, NJ, USA: IEEE, 2003: 84 -89. [29] DOU Z, CHEN X B, XU G, et al. An attempt at universal quantum secure multi-party computation with graph state. Physica Scripta, 2020, 95(5): Article 055106. [30] YANG K, HUANG L, YANG W, et al. Quantum teleportation via GHZ-like state. International Journal of Theoretical Physics, 2009, 48(2): 516 -521. [31] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 1935, 47(10): 777 -780. [32] DUR W, VIDAL G, CIRAC J I. Three qubits can be entangled in two inequivalent ways. Physical Review A, 2000, 62 (6): Article 062314.
[33] NASERI M, RAJI M A, HANTEHZADEH M R, et al. A scheme for secure quantum communication network with |
[1] | Han Zhen, Zhou Wen'an, Han Xiaoxuan, Wu Jie. Black-box membership inference attacks based on shadow model [J]. The Journal of China Universities of Posts and Telecommunications, 2024, 31(4): 1-16. |
[2] | . Personalized trajectory data perturbation algorithm based on quadtree indexing [J]. The Journal of China Universities of Posts and Telecommunications, 2024, 31(4): 17-27. |
[3] | Meng Hui, Ren Lina, Zhao Zongqu. Identity-based proxy re-encryption scheme from RLWE assumption with ciphertext evolution [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(5): 51-60. |
[4] | Peng Weiping, Cui Shuang, Song Cheng, Han Ning. Enhanced secure medical data sharing with traceable and direct revocation [J]. The Journal of China Universities of Posts and Telecommunications, 2023, 30(1): 66-79. |
[5] | Han Gang, Xing Qixuan, Zhang Yinghui. Fine-grained cooperative access control scheme with hidden policies [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(6): 13-25. |
[6] | Tao Yunting, Kong Fanyu, Yu Jia. EPMDA: an efficient privacy-preserving multi-dimensional data aggregation scheme for edge computing-based IoT system [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(6): 26-35. |
[7] | Xu Yan, Li Zheng, Ding Long, Xu Rui. Cross-domain data cloud storage auditing scheme based on certificateless cryptography [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(6): 36-47. |
[8] | Zhao Guosheng, Zhang Jingting, Wang Jian. Research on location privacy protection method of sensor-cloud base station [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(1): 64-77. |
[9] | Zhao Zongqu, Ma Shaoti, Wang Yongjun, Tang Yongli, Ye Qing. Two-factor ( biometric and password) authentication key exchange on lattice based on key consensus [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(6): 42-53. |
[10] | Lin Jie, Liu Chuanyi, Fang Binxing. VMScan: an out-of-VM malware scanner [J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(4): 59-68. |
[11] | Tang Yongli, Wang Mingming, Ye Qing, Qin Panke, Zhao Zongqu. Lattice-based hierarchical identity-based broadcast encryption scheme in the standard model [J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(4): 70-79. |
[12] | Cai Xiumei, Liu Chao, Huang Xianying, Liu Xiaoyang, Cao Qiong, Yang Hongyu. Dynamic model of computer viruses under the effect of removable media and external computers [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2018, 25(4): 86-93. |
[13] | Min Xiangshen, Fan Jiulun, Zhang Xuefeng, Ren Fang. Color image encryption scheme based on chaotic systems [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2018, 25(2): 39-48. |
[14] | Ding Haiyang, Li Zichen, Bi Wei. (k, n) halftone visual cryptography based on Shamir‘s secret sharing [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2018, 25(2): 60-76. |
[15] | Chen Shangdi, Wen Jiejing. New key pre-distribution scheme using symplectic geometry over finite fields for wireless sensor networks [J]. JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOM, 2017, 24(5): 16-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||