The Journal of China Universities of Posts and Telecommunications ›› 2020, Vol. 27 ›› Issue (6): 17-29.doi: 10.19682/j.cnki.1005-8885.2020.0043
Previous Articles Next Articles
Zhang Yanhang. Surveys on the intelligent surface: an innovative technology for wireless networks beyond 5G[J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(6): 17-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://jcupt.bupt.edu.cn/EN/10.19682/j.cnki.1005-8885.2020.0043
[1] Cisco visual networking index: Global mobile data traffic forecast update, 2017-2022. White Paper. San Jose, CA, USA: Cisco, 2019.
[2] Basar E. Index modulation techniques for 5G wireless networks. IEEE Communications Magazine, 2016, 54(7): 168-175.
[3] Basar E, Wen M W, Mesleh R, et al. Index modulation techniques for next-generation wireless networks. IEEE Access, 2017, 5: 16 693-16 746.
[4] Di Renzo M, Haas H, Ghrayeb A, et al. Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 2014, 102(1): 56-103.
[5] Basar E. Media-based modulation for future wireless systems: A tutorial. IEEE Wireless Communications, 2019, 26(5): 160-166.
[6] Liaskos C, Nie S, Tsioliaridou A, et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Communications Magazine, 2018, 56(9): 162-169.
[7] Basar E. Transmission through large intelligent surfaces: A new frontier in wireless communications. Proceedings of the 2019 European Conference on Networks and Communications (EuCNC’19), 2019, Jun 18-21, Valencia, Spain. Piscataway, NJ, USA: IEEE, 2019: 112-117.
[8] Liaskos C, Nie S, Tsioliaridou A, et al. Realizing wireless communication through software- defined hypersurface environments. Proceedings of the IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM’18), 2018, Jun 12-15, Chania, Greece. Piscataway, NJ, USA: IEEE, 2018: 14-15.
[9] Lavigne G, Achouri K, Asadchy V S, et al.Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction. IEEE Trans on Antennas and Propagation, 2018, 66(3): 1321-1330.
[10] Liu F, Pitilakis A, Mirmoosa M S, et al. Programmable metasurfaces: State of the art and prospects. Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS’18), 2018, May 27-30, Florence, Italy. Piscataway, NJ, USA: IEEE, 2018: 5p.
[11] Di Renzo M, Debbah M, Phan-Huy D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP Journal on Wireless Communications and Networking, 2019: Article 129.
[12] Basar E, Di Renzo M, De Rosny J, et al. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 2019, 7: 116753-116773, .
[13] Asadchy V S, Albooyeh M, Tcvetkova S N, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Physical Review B, 2016, 94: Article 075142.
[14] Diaz-Rubio A, Asadchy V, Elsakka A, et al. Metasurfaces for perfect control of reflection. Proceedings of the 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT’17), 2017, Mar 1-3, Athens, Greece. Piscataway, NJ, USA: IEEE, 2017: 3-5.
[15] Hu S, Rusek F, Edfors O. The potential of using large antenna arrays on intelligent surfaces. Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring’17), 2017, Jun 4-7, Sydney, Australia. Piscataway, NJ, USA: IEEE, 2017.
[16] Hu S, Rusek F, Edfors O. Capacity degradation with modeling hardware impairment in large intelligent surface. Proceedings of the in 2018 IEEE Global Communications Conference (GLOBECOM’18), 2018, Dec 9-13, Abu Dhabi, United Arab Emirates. Piscataway, NJ, USA: IEEE, 2018: 6p.
[17] Hu S, Chitti K, Rusek F, et al. User assignment with distributed large intelligent surface (LIS) systems. Proceedings of the IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’18), 2018, Sept 9-12, Bologna, Italy. Piscataway, NJ, USA: IEEE, 2018: 6p.
[18] Wu Q Q, ZhangR. Beamforming optimization for intelligent reflecting surface with discrete phase shifts. Proceedings of the in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’19), 2019, May 12-17, Brighton, UK. Piscataway, NJ, USA: IEEE, 2019: 7830-7833.
[19] Jensen T L, De Carvalho D. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator. arXiv:1909.09440, 2019.
[20] Alegria J V, Sanchez J R, Rusek F, et al. Decentralized equalizer construction for large intelligent surfaces. Proceedings of the IEEE 90th Vehicular Technology Conference (VTC Fall’19), 2019, Sept 22-25, Honolulu, HI, USA. Piscataway, NJ, USA: IEEE, 2019: 6p.
[21] Tah A, Alrabeiah M, Alkhateeb A. Enabling large intelligent surfaces with compressive sensing and deep learning. arXiv:1904.10136, 2019.
[22] Liaskos C, Tsioliaridou A, Pitilakis A, et al. Joint compressed sensing and manipulation of wireless emissions with intelligent surfaces. arXiv:1904.10670, 2019.
[23] Wu Q Q, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans on Wireless Communications, 2019, 18(11): 5394-5409.
[24] Tang W K, Chen M Z, Chen X Y, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. arXiv:1911.05326, 2019.
[25] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications, 2017, 8(1): Article 197.
[26] Keqian Z, Dejie L. Electromagnetic theory for microwaves and optoelectronics. Berlin, Germany: Springer, 1998.
[27] Tang W K, Li X, Dai J Y, et al. Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 2019, 16(5): 46-61.
[28] Tang W K, Dai J Y, Chen M Z, et al. A programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electronics Letters, 2019, 55(7): 417-420.
[29] Yan W J, Kuai X Y, Yuan X J. Passive beamforming and information transfer via large intelligent surface. arXiv:1905.01491, 2019.
[30] Han Y, Tang W K, Jin S, et al. Large intelligent surface- assisted wireless communication exploiting statistical CSI. IEEE Trans on Vehicular Technology, 2019, 68(8): 8238-8242.
[31] Ntontin K, Song J, Di Renzo M. Multi-antenna relaying and reconfigurable intelligent surfaces: End-to-end SNR and achievable rate. arXiv:1908.07967, 2019.
[32] Ntontin K, Di Renzo M, Song J, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. arXiv:1908.08747, 2019.
[33] Jung M, Saad W, Debbah M, et al. On the optimality of reconfigurable intelligent surfaces (RISs): Passive beamforming, modulation, and resource allocation. arXiv:1910.00968, 2019.
[34] Huang C W, Zappon A, Alexandropoulos G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans on Wireless Communications, 2019, 18(8): 4157-417.
[35] Lu L, Li G Y, Swindlehurst L A, et al. An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758.
[36] Hou T W, Liu Y W, Song Z Y, et al. MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model. arXiv:1910.00959, 2019
[37] Cao Y S, Lü T J. Intelligent reflecting surface aided multi-user millimeter-wave communications for coverage enhancement. arXiv:1910.02398, 2019.
[38] Huang C W, Zappone A, DebbahM, et al. Achievable rate maximization by passive intelligent mirrors. Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’18), 2018, Apr 15-20, Calgary, Canada. Piscataway, NJ, USA: IEEE, 2018: 3714-3718.
[39] Huang C G, Alexandropoulos G C, Zappone A, et al. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces. Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps'18), 2018, Dec 9-13, Abu Dhabi, United Arab Emirates. Piscataway, NJ, USA: IEEE, 2018.
[40] Guo H Y, Liang Y C, Chen J, et al. Weighted sum- rate optimization for intelligent reflecting surface enhanced wireless networks. arXiv:1905.07920, 2019.
[41] Nadeem Q U A, Kammoun A, Chaaban A, et al. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. arXiv:1903.08127, 2019.
[42] Mishra D, Johansson H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’19), 2019, May 12-17, Brighton, UK. Piscataway, NJ, USA: IEEE, 2019: 4659-4663.
[43] Nadeem Q U A, Kammoun A, Chaaban A, et al. Intelligent reflecting surface assisted wireless communication: Modeling and channel estimatio. arXiv:1906.02360, 2019.
[44] Zhou G, Pan C H, Ren H, et al. Intelligent reflecting surface aided multigroup multicast MISO communication systems. arXiv:1906.02360, 2019.
[45] Li H Y, Liu R, Li M, et al. IRS-enhanced wideband MU-MISO-OFDM communication systems. arXiv:1909.11314, 2019.
[46] Yu X H, Xu D F, Schober R. MISO wireless communication systems via intelligent reflecting surfaces. Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC'19), 2019, Aug 11-13, Changchun, China. Piscataway, NJ, USA: IEEE, 2019.
[47] Hu S, Rusek F, Edfors O. Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Trans on Signal Processing, 2018, 66(10): 2746-2758.
[48] Hu S, Rusek F, Edfors O. Beyond massive MIMO: The potential of positioning with large intelligent surfaces. IEEE Trans on Signal Processing, 2018, 66(7): 1761-1774.
[49] Zhou Y H, He X Y, Shen D Y, et al. Metasurface for high isolation in MIMO antenna. Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS’18), 2018, May 6-10, Chengdu, China. Piscataway, NJ, USA: IEEE, 2018: 4p.
[50] Yoo I, Imani M F, Sleasman T, et al. Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Trans on Communications, 2019, 67(2): 1070-1084.
[51] Zhang S W, Zhang R. Capacity characterization for intelligent reflecting surface aided MIMO communication. arXiv:1910.01573, 2019.
[52] Ye J, Guo S, Alouini M S. Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems. arXiv:1906.11466, 2019.
[53] Chen J, Liang Y C, Cheng H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems. arXiv:1912.03619, 2019.
[54] Wang H Q, Shlezinger N, Jin S, et al. Dynamic metasurface antennas based downlink massive MIMO systems. Proceedings of the IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC’19), 2019, Jul 2-5, Cannes, France. Piscataway, NJ, USA: IEEE, 2019: 5p.
[55] Tasolamprou A C, Pitilakis A, Abadal S, et al. Exploration of intercell wireless millimeter-wave communication in the landscape of intelligent metasurfaces. IEEE Access, 2019, 7: 122931-122948.
[56] He J G,. Wymeersch H, Kong L, et al. Large intelligent surface for positioning in millimeter wave MIMO systems. arXiv:1910.00060, 2019.
[57] Wang P L, Fang J, Duan H P, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems. arXiv:1911.07202, 2020.
[58] Chen W J, Ma X Y, Li, Z X, et al.Sum-rate maximization for intelligent reflecting surface based terahertz communication systems. Proceedings of the 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops’19), 2019, Aug 11-13, Changchun, China. Piscataway, NJ, USA: IEEE, 2019: 153-157.
[59] Chen J, Liang Y C, Pei Y Y, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access, 2019, 7: 82599-82612.
[60] Liaskos C, Nie S, Tsioliaridou A, et al. A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems. Ad Hoc Networks, 2019, 87: 1-16.
[61] Yu X H, Xu D F, Schober R. Enabling secure wireless communications via intelligent reflecting surfaces. Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM'19), 2019, Dec 9-13, Waikoloa, HI, USA. Piscataway, NJ, USA: IEEE, 2019.
[62] Feng B Q, Wu Y P, Zheng M F. Secure transmission strategy for intelligent reflecting surface enhanced wireless system. arXiv:1909.00629, 2019.
[63] Chu Z, Hao W M, Xiao P, et al. Intelligent reflecting surface aided multi-antenna secure transmission. IEEE Wireless Communications Letters: 2020, 9(1): 108-112.
[64] Shen H, Xu W, Gong S L, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Communications Letters, 2019, 23(9): 1488-14929.
[65] Cui M, Zhang G C, Zhang R. Secure wireless communication via intelligent reflecting surface. IEEE Wireless Communications Letters, 2019, 8(5): 1410-1414.
[66] Guan X R, Wu Q Q, Zhang R. Intelligent reflecting surface assisted secrecy communication via joint beamforming and jamming. arXiv:1907.12839, 2019.
[67] Jiang T, Shi Y M. Over-the-air computation via intelligent reflecting surfaces. arXiv:1904.12475, 2019.
[68] Huang C W, Alexandropoulos G C, Yuen C, et al. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. Proceedings of the IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC’19), 2019, Jul 2-5, Cannes, France. Piscataway, NJ, USA: IEEE, 2019: 5p.
[69] Najafi M, Schober R. Intelligent reflecting surfaces for free space optical communications. arXiv:1905.01094, 2019.
[70] Fu M, Zhou Y, Shi Y M. Intelligent reflecting surface for downlink non-orthogonal multiple access networks. Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps’19), 2019, Dec 9-13, Waikoloa, HI, USA. Piscataway, NJ, USA: IEEE, 2019: 5p.
[71] Yang Y F, Zheng B X, Zhang S W, et al. Intelligent reflecting surface meets OFDM: Protocol design and rate maximization. arXiv:1906.09956, 2019.
[72] Jung M, Saad W, Jang Y, et al. Reliability analysis of large intelligent surfaces (LISs): Rate distribution and outage probability. arXiv:1903.11456, 2019.
[73] Hodge J A, Mishra K V, Zaghloul A I. Reconfigurable metasurfaces for index modulation in 5G wireless communications. Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES’19), 2019, Apr 14-19, Miami, FL, USA. Piscataway, NJ, USA: IEEE, 2019: 2p.
[74] Di Renzo M, Zappone A, Debbah M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead. IEEE Journal on Selected Areas in Communications, Early Access, DOI:10.1109/JSAC.2020.3007211.
|
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||