1. Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. Computer Vision: Proceedings of the 14th European Conference on Computer Vision (ECCV'14), 2014, Sept 6-12, Zurich, Switzerland. LNCS 8689. Berlin, Germany: Springer, 2014: 818-833.
2. Bilen H, Fernando B, Gavves E, et al. Dynamic image networks for action recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), 2016, Jun 27-30, Las Vegas, NV, USA. Piscataway, NJ, USA: IEEE, 2016: 3034-3042.
3. Berg A, Deng J, Li F F. Large scale visual recognition challenge 2010. ImageNet. Palo Alto, CA, USA: Stanford Vision Lab, Stanford University, 2010
4. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211-252.
5. Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS'12): Vol 1, 2012, Dec 3-6, Lake Tahoe, CA, USA. Red Hook, NY, USA: Curran Associates, 2012: 1097-1105.
6. Wu M Y, Li C. Image recognition based on deep learning. Proceedings of the 2015 Chinese Automation Congress (CAC’15), 2015, Nov 27-29, Wuhan, China. Piscataway, NJ, USA: IEEE, 2015: 542-546.
7. Szegedy C, Liu W, Jia Y P, et al. Going deeper with convolutions. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015, Jun 7-12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 1-9.
8. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556, 2014,
9. Sermanet P, Eigen D, Zhang X, et al. OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.
10. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, Jun 23-28, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 580-587.
11. Farabet C, Couprie C, Najman L, et al. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929.
12. Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, Jun 23-28, Columbus, OH, USA. Piscataway, NJ, USA: IEEE, 2014: 1725-1732.
13. Zhu Z G, Ji H B, Zhang W B. Nonlinear gated channels networks for action recognition. Neurocomputing, 2020, 386: 325-332
14. Annane D, Chevrolet J C, Chevret S, et al. Two-stream convolutional networks for action recognition in videos. Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS'14): Vol 1, 2014, Dec 8-13, Montreal, Canada. Cambridge, MA, USA: MIT Press, 2014: 568-576.
15. Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
16. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statisitics (AISTATS’11), 2011, Apr 11-13, Ft Lauderdale, FL, USA. 2011: 315-323.
17. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning (ICML’15), 2015, Jul 6-11, Lille, France.2015: 448-456.
18. Wang L M, Qiao Y, Tang X O. Action recognition with trajectory-pooled deep-convolutional descriptors. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015, Jun 7-12, Boston, MA, USA. Piscataway, NJ, USA: IEEE, 2015: 4305-4314.
19. Sun C, Nevatia R. Large-scale Web video event classification by use of Fisher vectors. Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV’13), 2013, Jan 15-17, Tampa, FL, USA. Piscataway, NJ, USA: IEEE, 2013: 15-22.
20. Zhou J L, Li Z L, Zhi W M, et al. Using convolutional neural networks and transfer learning for bone age classification. Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA’17), 2017, Nov 29-Dec 1, Sydney, Australia. Piscataway, NJ, USA: IEEE, 2017: 17-22.
21. Mohammadnia-Qaraei M R, Monsefi R, Ghiasi-Shirazi K. Convolutional kernel networks based on a convex combination of cosine kernels. Pattern Recognition Letters, 2018, 116: 127-134.
22. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. Technical Report. Toronto, Canada: University of Toronto, 2009.
23. Jia Y P, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia (MM'14), 2014, Nov 3-7, Orlando, FL, USA. New York, NY, USA: ACM, 2014: 675-678.
|