1. Gilbert E N, Macwilliams F J, Sloane N J A. Codes which detect deception. The Bell System Technical Journal, 1974, 53: 405-423
2. Wan Z X. Geometry of classical groups over finite fields. 2nd ed. Beijing, China: Science Press, 2002: 61-72
3. Feng R Q. Another construction of Cartesian authentication codes from geometry of classical groups. Northeast Mathematical Journal, 1999, 15(1): 103-114
4. Gao S G. Two constructions of Cartesian authentication codes from unitary geometry. Applied Mathematics A Journal of Chinese Universities, 1996, 11(3): 343-354 (in Chinese)
5. Chen S D, Zhao D W. Two constructions of optimal Cartesian authentication codes from unitary geometry over finite fields. Acta Mathematicae Applicates Sinica, 2013, 29(4): 829-836
6. Chen S D, Zhao D W. Construction of multi-receiver multi-fold authentication codes from singular symplectic geometry over finite fields. Algebra Colloquium, 2013, 20(4): 701-710
7. Nan J Z, Guo J, Gao S G. Subspaces in d-bounded distance-regular graphs and authentication code with perfect secrecy. Ars Combinatoria: Waterioo then Winnipeg, 2015, 119: 33-45
8. Simmons G J. Message authentication with arbitration of transmitter/ receiver disputes. Advances in Cryptology: Proceedings of 7th Annual International Cryptology Conference (Crypto’87), Aug 16-20, 1987, Santa Barbara, CA, USA. LNCS 293. Berlin, Germany: Springer-Verlag, 1988: 151-165
9. Simmons G J. A Cartesian product construction for unconditionally secure authentication codes that permit arbitration. Journal of Cryptology, 1990, 2(2): 77-104
10. Li L, Huo L J, Li Z M. New construction of authentication codes with arbitration from symplectic geometry. Journal of Hebei University of Science and Technology, 2010, 31(4): 294-299 (in Chinese)
11. Liang M, Li M C, Du B L. A construction for t-fold perfect authentication codes with arbitration. Designs, Code Cryptography, 2014, 73(3): 781-790
12. Wang Y C, Yang Y X. Information theoretic lower bounds for authentication codes with arbiter. Acta Electronica Sinica, 1999, 27(4): 90-93 (in Chinese)
13. Chen S D, Zhao D W. Construction of authentication codes with arbitration over symplectic geometry. Journal of Civil Aviation University of China, 2011, 28(5): 629-641 (in Chinese)
14. Chen S D, Ma H. Construction of authentication codes with double arbiters over symplectic geometry. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(4): 1141-1152
15. Gao Y, Shi X H, Wang H L. A construction of authentication codes with arbitration from singular symplectic geometry over finite fields. Acta Scientiarum Naturalium Universitatis Nankaien, 2008, 41(6): 72-77 (in Chinese)
16. Li W J, Nan J Z. A construction of authentication codes with arbitration from vector spaces over finite fields. Journal of Mathematical Research with Applications, 2011, 31(2): 269-278
17. Johansson T. Further results on asymmetric authentication schemes. Information and Computation, 1999, 152(1/2): 100-133
18. Brickell E F, Stinson D R. Authentication codes with multiple arbiters. Advances in Cryptology: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques (EUROCRYPT’88), May 25-27, 1988, Davos, Switzerland. LNCS 330. Berlin, Germany: Springer-Verlag, 1988: 51-55
19. Pei D Y, Li Y Q, Wang Y J, et al. Characterization of optimal authentication codes with arbitration. Proceedings of the 4th Australasian Conference on Information Security and Privacy (ACISP’99), Apr 7-9, 1999, Wollongong, Australia, 1999: 303-313
20. Chen S D, Zhang X L. Three constructions of perfect authentication codes from projective geometry over finite fields. Applied Mathematics and Computation, 2015, 253(1): 308-317
21. Chen S D, Chang L Z. Two constructions of multi-sender authentication codes with arbitration based linear codes. WSEAS Transactions on Mathematics, 2012, 11(12): 1103-1113
22. Guo J. Construction of authentication codes with arbitration from finite affine geometry. Journal of Science of Teachers’ College and University, 2007, 27(1):1-4 (in Chinese)
23. Desmedt Y, Yung M. Arbitrated unconditionally secure authentication can be unconditionally protected against arbiter’s attacks. Advances in Cryptology: Proceeding of the 10th Annual International Cryptology Conference (CRYPTO’90), Aug 11-15, 1990, Santa Barbara, CA, USA. LNCS 537. Berlin, Germany: Springer-Verlag, 1991: 177-181
24. Chen S D, Zhang X L, Ma H. Two constructions of A3-code from projective geometry over finite fields. The Journal of China University Posts and Telecommunications, 2015, 22(2): 52-59
25. Gao Y, Liu Y Q. The constructions of A3-code from projective spaces over finite field. WESAS Transactions on Mathematics, 2013, 12(10): 1024-1033
26. Wang Y J, Safavi-Naini R. A3-codes under collusion attacks. Advances in Cryptology: Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security (ASIACRYPT’99), Nov 14-18, 1999, Singapore. LNCS 1716. Berlin, Germany: Springer- Verlag, 1999: 390-398
27. Safavi-Naini R, Wang H. Bounds and constructions for multireceiver authentication codes. Advances in Cryptology: Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security (ASIACRYPT’98), Oct 18-22, 1998, Beijing, China. LNCS 1514. Berlin, Germany: Springer-Verlag, 1998: 242-256 |