1. Golomb S W, Gong G. Signal design for good correlation: for wireless communication, cryptography and radar. New York, NY, USA: Cambridge University Press, 2004
2. Jang J W, Kim Y S, Kim S H, et al. New quaternary sequences with ideal autocorrelation constructed from binary sequences with ideal autocorrelation. Proceedings of the IEEE International Symposium on Information Theory (ISIT’09), Jul 28-Jul 3,2009, Seoul, Republic of Korea. Piscataway, NJ, USA: IEEE, 2009: 278-281
3. Tang X H, Ding C S. New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value. IEEE Transactions on Information Theory, 2010, 56(12): 6398-6405
4. Yang Z, Ke P H. Construction of quaternary sequences of length PQ with low autocorrelation. Cryptography and Communications, 2011, 3(2): 55-64
5. Tang X H, Linder J. Almost quadriphase sequence with ideal autocorrelation property. IEEE Signal Processing Letters, 2009, 16(1): 38-40
6. Green D H, Green P R. Polyphase power residue sequences. Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459: 817-827
7. Li N, Tang X H, Helleseth T. New M-ary sequences with low autocorrelation from interleaved technique. Design Codes and Cryptogrphy, DOI 10.1007/s10623-013-9821-8 (in publish)
8. Sidel'nikov V M. Some k-valued pseudo-random sequences and nearly equidistant codes. Problems of Information Transmission, 1969, 5(1): 12-16
9. Yang Z, Ke P H. Quaternary sequences with odd period and low autocorrelation. Electronics Letters , 2011, 46(15):1068-1069
10. Reeds J A, Sloane N J A. Shift register synthesis (modulo m). SIAM Journal of Computation, 1985,14: 505-513
11. Lidl R, Niederreiter H. Finite fields. Reading, MA, USA: Addison-Wesley Press, 1983
12. Zhao L, Wen Q Y, Zhang J. On the linear complexity of a class of quaternary sequences with low autocorrelation. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2013, 96-A(5): 997-1000
13. Cusick T W, Ding C, Renvall A R. Stream ciphers and number theory. Amsterdam, Netherlands: Elsevier Science, 1998:198-212
14. Udaya P, Siddiqi M U. Generalized GMW quadriphase qequences satisfying the welch bound with equality. Applicable Algebra in Engineering Communication and Computing, 2000, 10: 203-225
15. Wan Z X. Finite fields and galois rings. Singapore: World Scientific Publisher, 2003 |