1. Golomb S W, Gong G. Signal design for good correlation: for wireless communication, cryptography, and radar. New York, NY, USA: Cambridge University Press, 2005: 117-124
2. Garcia A, Stichtenoth H. Topics in geometry, coding theory and cryptography. Berlin, Germany: Springer, 2007:135-166
3. Woungang I, Misra S, Misra S C. Selected topics in information and coding theory. Hackensack, NJ, USA: World Scientific Press, 2010: 3-40
5. Su M, Winterhof A. Autocorrelation of Legendre-Sidelnikov sequences. IEEE Transactions on Information Theory, 2010, 56(4): 1714-1718
6. Brandstätter N, Winterhof A. Some notes on the two-prime generator of order 2. IEEE Transactions on Information Theory, 2005, 51(10): 3645-3647
7. Cusick T W, Ding C S, Renvall A. Stream ciphers and number theory. 2nd ed. Amsterdam, Netherlands: Elsevier , 2004: 11-80
8. Michilovich S V. Some k-valued pseudorandom sequences and nearly equidistant codes. Problems of Information Transmission, 1969, 5(1): 12-16
9. Brandstätter N, Pirsic G, Winterhof A. Correlation of the two-prime Sidel’nikov sequence. Designs. Codes and Cryptography, 2011, 59(1-3): 59-68
10. Jungnickel D. Finite fields: structure and arithmetics. Mannheim, Germany: Bibliographisches Institut Wissenschaftsverlag Press, 1993
11. Ireland K, Rosen M. A Classical introduction to modern number theory. 2nd ed. Berlin, Germany: Springe, 1990: 50-58
12. Lempel A, Cohn M, Eastman W L. A class of balanced binary sequences with optimal autocorrelation properties. IEEE Transactions on Information Theory,1977, 23(1): 38-42
13. Cai Y. Binary pseudorandom sequences with good autocorrelation. Ph D Thesis. Beijing, China: Beijing Jiaotong University, 2009 (in Chinese)
|